ответ: 676π.
Объяснение:
Сечение шара - круг. Площадь круга: S = πr².
S₁ = πr₁² = 25π ⇒ r₁ = 5
S₂ = πr₂² = 144π ⇒ r₂ = 12
Отрезок, соединяющий центр шара с центром сечения, перпендикулярен сечению.
Обозначим ОС = х, тогда OS = 17 - х.
Из прямоугольных треугольников ОСА и OSB выразим радиус шара по теореме Пифагора:
R² = (17 - x)² + r₁² = (17 - x)² + 25
R² = x² + r₂² = x² + 144
(17 - x)² + 25 = x² + 144
289 - 34x + x² + 25 = x² + 144
34x = 170
x = 5
R = √(x² + 144) = √(25 + 144) = √169 = 13
Sпов. шара = 4πR² = 4 · π · 169 = 676π
первое
2R sin(&/2) ;2r tg(&/2) ; &- угол с вершиной вцентре тре--ка образованного стороной и ценром ; большой и малыйрадиусы - соответственно. Справедливо для любого правильного мн - ка.
тааакссс второе ты похоже пропустила буковку с когда написала м см ведь имеются ввиду?Я проходила это задание в 9 м классе
1. Во вписанном тр-ке сторона = радиусу = 9.
2. В описанном: высота правильного трка с основанием, = стороне, = 9. Угол при вершине тр-ка = 36. Находи по синусу.
третье
Апофема (от греч. apotithçмi — откладываю в сторону), 1) длина перпендикуляра, опущенного из центра правильного многоугольника на любую из его сторон .
Т.е. высота правильного треугольника со стороной 14. Формула в любом учебнике.
Решение во вложении.