Для прямоугольного треугольника справедлива теорема Пифагора : квадрат гипотенузы равен сумме квадратов катетов.
Треугольник с заданными сторонами является прямоугольным.
25² = 7² + 24²
625 = 49 + 576 = 625
Пусть коэффициент пропорциональности равен k, тогда пропорциональные стороны треугольника будут 7k, 24k, 25k
(25k)² = (7k)² + (24k)²
625k² = 49k² + 576k² ⇒ 625k² = 625k²
Для треугольника со сторонами 7k, 24k, 25k тоже справедлива теорема Пифагора, значит, треугольник является прямоугольным.
(с каждой вершины выходят отрезки соединяющие ее с остальными n-1 вершинами, две из них стороны, остальные n-3 отрезка - диагонали
всего вершин n, потому количество всех диагоналей n(n-3), но так как концы отрезка принадлежат двум вершинам, то в этом произведении мы посчитали каждую диагоналей дважды, поэтому
число диагоналей n(n-3)/2)
итого
имеем для данного многоульника
n(n-3)/2=35
n(n-3)=70
итого вершин 10
10*(10-3):2=35
в выпуклом многоугольнике число вершин=числу сторон
ответ: 10