М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
eromadima
eromadima
07.10.2020 22:27 •  Геометрия

Дана треугольная пирамида ABCD, AD = AC = BC - BD = \sqrt{13}; AB = CD = 2 \sqrt{3\\}.

a) Докажи, что AВ перпендикулярна CD.

б) Найди расстояние между прямыми CD и АВ.

👇
Ответ:
janibek01
janibek01
07.10.2020
a) Чтобы доказать, что прямая AB перпендикулярна CD, нам нужно показать, что вектор AB перпендикулярен вектору CD. Для этого рассмотрим векторы AB и CD.

Вектор AB можно представить как сумму векторов AD и DB: AB = AD + DB.
Подставим известные значения: AB = AC - AC + BC - BD = AC - AC + BD - BD = BD.

Вектор CD можно представить как сумму векторов AC и AD: CD = AC + AD.
Подставим известные значения: CD = AC - AC + AD = AD.

Из полученных равенств видно, что вектор AB равен вектору BD, а вектор CD равен вектору AD. Векторы AB и CD равны и имеют одну и ту же длину. Это означает, что эти векторы перпендикулярны друг другу.

Таким образом, прямая AB перпендикулярна прямой CD.

б) Чтобы найти расстояние между прямыми CD и AB, нам нужно найти высоту треугольника ABC, опущенную из вершины A на прямую CD. Высота треугольника - это отрезок, проведенный из вершины треугольника к основанию перпендикулярно основанию.

Рассмотрим треугольник ABC. Мы знаем, что стороны треугольника ABC равны AD = AC = BC и AB = CD.

Для начала найдем площадь этого треугольника по формуле Герона:
S = sqrt(p(p-AD)(p-AC)(p-BC)),
где p - полупериметр треугольника.

Так как AD = AC = BC = sqrt(13), то полупериметр p равен (3*sqrt(13))/2.

Подставим значения в формулу и найдем площадь треугольника:
S = sqrt(((3*sqrt(13))/2) * (((3*sqrt(13))/2) - sqrt(13)) * (((3*sqrt(13))/2) - sqrt(13)) * (((3*sqrt(13))/2) - sqrt(13)))
S = sqrt(((3*sqrt(13))/2) * ((3*sqrt(13))/2 - sqrt(13)) * ((3*sqrt(13))/2 - sqrt(13)) * ((3*sqrt(13))/2 - sqrt(13)))
S = sqrt(((3*sqrt(13))/2) * (sqrt(13)/2) * (sqrt(13)/2) * (sqrt(13)/2))
S = sqrt((3*13)/16)
S = sqrt(39/16)
S = sqrt(39)/4

Теперь мы можем найти расстояние между прямыми CD и AB, используя формулу для площади треугольника:
h = (2S)/AB,
где h - высота треугольника, AB - основание треугольника.

Подставим значения и найдем высоту:
h = (2 * sqrt(39)/4)/2(sqrt(3))
h = sqrt(39)/(2sqrt(3))
h = sqrt(39)/(2sqrt(3)) * (sqrt(3)/sqrt(3))
h = (sqrt(39)sqrt(3))/(2sqrt(3)sqrt(3))
h = sqrt(39*3)/(2*3)
h = sqrt(117)/6

Таким образом, расстояние между прямыми CD и AB равно sqrt(117)/6.
4,4(81 оценок)
Проверить ответ в нейросети
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ