Точка H належить відрізку АВ, довжина якого дорівнює 16 см. Визначте довжини відрізків АH і ВH, якщо довжина відрізка АH у 2 рази менша від довжини відрізка ВH
Рассмотрим ΔАВD. Он - прямоугольный, так как ВD⊥АВ⇒∠DВА=90°. Найдем ∠АDВ по теореме о сумме ∠Δ: ∠АDВ=180°-60°-90°=30° Рассмотрим ∠ВDА и ∠DВС, учитывая, что ВС∫∫АD(по определению трапеции): эти углы накрест лежащие при парал. прям. и сек. ⇒ они равны(по св-ву парал. прям) ⇒ ∠АDВ=∠СВD=30°. При этом, ВD - так же биссектриса ∠D⇒∠АDВ=∠ВDС=30° ⇒ ∠D=60° ⇒ АВСD - равнобедренная трапеция(по признаку) Найдем ∠DСВ. Рассмотрим ΔВСD: ∠В=∠D=30 ⇒ найдем ∠С по теореме о сумме ∠Δ: 180°-60°=120° ∠DCВ=∠АВС(по опр. равноб. трап.) ⇒ АВС=120° ответ: 60°, 60°, 120°, 120°
Если i, j и k - векторы, по модулю равные единице и направленные по координатным осям Ox, Oy и Oz, то разложение вектора А по трем координатным осям выражается формулой A=Axi+Ayj+Azk, где Ax, Ay и Az - проекции вектора А на координатные оси Ox, Oy и Oz. Величины Ax, Ay и Az - проекции вектора А на координатные оси - называются координатами вектора. Если вектор А имеет начало в начале координат, а его конец А имеет координаты x, y и z? то тогда его проекции на координатные оси равны координатам его конца: Ax=x; Ay=y; Az=z. В этом случае вектор А называется радиус вектором точки А. Радиус вектор обозначается обыкновенно через r r=xi+yj+zk
Объяснение:
Нехай АН=х см, тоді ВН=2х см
х+2х=16
3х=16
х=5 1/3
АН=5 1/3 см, ВН=16 - 5 1/3 = 10 2/3 см