1) По правилу нахождения разности векторов, начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом — конец вектора (a) (уменьшаемое). ОА-ОВ=ВА. По правилу нахождения суммы векторов, начало второго вектора совмещается с концом первого, сумма векторов есть вектор, с началом, совпадающим с началом первого, и концом, совпадающим с концом второго.ВА+АС=ВС. ответ:(OA-OB) +AC = ВС. 2) АВ-АО=ОВ (по правилу). ОВ-OD = DB (по правилу от конца вычитаемого к концу уменьшаемого). Или так: в параллелограмме точка пересечения диагоналей делит их пополам. Векторы ОВ и OD равны, но направлены в противоположные стороны, значит ОD = -OB и ОВ-OD = OB-(-ОВ) = 2ОВ =DB. ответ: (AB-AO)-OD = DB.
Угол АОС=120° Меньшая дуга АC=120°,
большая дуга АC=360°-120°=240°
Возможны два случая расположения т.В.
а) Точка В расположена на большей дуге АС.
Точка В делит дугу 240° в отношении АВ=3 части, ВС=5 частей. ⇒
◡АВ=240°:8•3=90°; ◡ВС=240:8•5=150°.
Тогда в ∆ АВС его вписанные углы равны:
угол В равен половине центрального угла АОС=120°:2=60°.
Угол С равен половине центрального АОВ и равен 90°:2=45°.
Угол А=половине центрального СОВ и равен 150:2=75°⇒
Углы ∆ АВС равны 45°, 60°, 75°
б) Точка В расположена на меньшей дуге АС.
◡АВ=120°:8•3=45°; ◡ВС=120°:8•5=75°
Вписанные углы равны половине градусной меры дуг, на которые опираются.
∠А=75°:2=37,5°
∠С=45°:2=22,5°
∠В=240°:2=120°
Углы ∆ АВС равны 22,5°; 37,5°; 120°.