Трапеция АВСД, ВС=9, АД=15, проводим среднюю линию трапеции МН, которая параллельна ВС и АД, точки О и Р пересечение средней линии с диагоналями, для треугольника АВС МО=средней линии треугольника (теорема Фалеса, если параллельные прямые отсекают на одной стороне угла равные отрезки, то и на другой стороне угла они отсекают равные отрезки) , т.е АВ=МВ, то АО=ОС, МО=1/2ВС =9/2=4,5, То же самое для треугольника ВСД, РН - средняя линия =1/2ВС=9/2=4,5, Средняя линия трапеции МН=(АД+ВС)/2=(15+9)/2=12 ОР (отрезок соединяющий середины диагоналей)=МН-МО-РН=12-4,5-4,5=3
1) АВС данный равнобедренный треугольник. АВ=ВС, Основание АС. Пусть АВ будет х, тогда АС 2х. Р=АВ+ВС+АС, так как Р=18.4 по условию, то 18.4=х+х+2х 18,4= 4х х=4,6 Следовательно АВ=ВС=4.6 Так как основание в два раза больше , то АС= 2*4,6=9,2
2)Дано равнобедренный треугольник АВС, угол ДВС внешний угол при вершине. По свойству внутреннего угла ДВС= угол А+угол С Треугольник АВС равнобедренный по условию, тогда угол А= углу С= х 76=х+х 76=2х х=76:2 х=38 угол А=углу С= 38 так как сумма углов треугольника 180, то угол В= 180-(А+С) В=180-(38+38)=180-76=104 ответ: угол А= 38, угол С= 38, угол В= 104
62