Очевидно, что указанный отрезок является медианой данного треугольника. А медиана разделит равнобедренный треугольник на два абсолютно равных. Периметр полученных треугольников одинаков. Но для подсчета периметра исходного треугольника нужно исключить медиану из расчетов, так как она не будет входит в его периметр (но она входит в периметры маленьких треугольников и мы ее будем исключать из расчетов). Получаем, что периметр каждого маленького треугольника без медианы равен 30 - 5 = 25 см. А потому периметр исходного треугольника равен 25*2 = 50 см. (Начертите рисунок и увидите нагляднее!)
Из условия задачи следует, что угол при основании треугольника АВС равен 30 град. Обозначим сторону равнобедренного треугольника через а, основание через b, радиус описанной окружности через R. Половина основания b/2=а*cos(30)=a*sqr(3)/2, b=a*sqr(3) Известно, что: R=a^2/sqr(4a^2-b^2) Подставив значение b, получим: R=a Отсюда: АВ=2 см Во второй задаче центр вписанной окружности совпадает с точкой пересечения биссектрис, поскольку радиусы опущенные из центра в точки М, Т и Р, образуют пары равных прямоугольных треугольников (ВОМ и ВОТ и т.д.). Четырехугольник РОТС является квадратом, так как радиусы проведены в точки касания и перпендикулярны катетам. По условия диагональ этого квадрата равна корень из 8, следовательно сторона будет в корень из двух раз меньше, отсюда: r=sqr(8/2)=2 Угол ТОР=90 град. Угол ТМР является вписанным, он измеряется половиной дуги, на которую опирается. Дуга составляет 90 градусов, так как ограничена точками Р и Т, а угол РСТ прямой. Следовательно угол ТМР=45 град.
Объяснение:
Скалярным произведение векторов называется произведение абсолютных величин этих векторов на косинус угла между ними.
По рисунку видим, что АВ=8, АС= 15. Тогда