Дан треугольник ABC плоскость Параллельная прямой AB пересекает сторону AC этого треугольника в точке A1 а сторону BC в точке B1 Найдите длину отрезка A1 С если AC = 20 см и A1 B1 :АВ=4:5
Вспомним свойство касательной : Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания(образует 90*). Проведем из центра окружности О два радиуса в точки А и В , у нас получился равносторонний треугольник ОАВ - все углы по 60*. Обозначим на касательной для удобства две точки К и С,как показано на рисунке( они расположены в противоположных сторонах от точки А). ∠ОАК =90* ∠ОАВ=60* ∠ВАК=∠ОАК -∠ОАВ ∠ВАК=90*-60* ∠ВАК=30* Мы нашли угол, образованный хордой АВ, длина которой равна радиусу окружности, и касательной, проходящей через точку А. Но хорда АВ и касательная КС также образуют ∠ОАС, найдём его. ∠ОАС и ∠ВАК это смежные углы, их сумма 180* ∠ОАС= 180*-∠ВАК ∠ОАС= 180*-30* ∠ОАС= 150*
12 см
Объяснение:
1) Острый угол, составляющий 2/3 прямого угла, равен:
90 · 2/3 = 60°.
2) Второй острый угол прямоугольного треугольника равен:
180 - 90 - 60 = 30°.
3) Меньший катет лежит против меньшего угла, то есть против угла 30°.
Катет, лежащий против угла 30°, равен половине гипотенузы.
Пусть х - меньший катет прямоугольного треугольника, тогда гипотенуза равна 2х. Составим уравнение и найдём х:
х + 2х = 18
3х = 18
х = 18 : 3 = 6 см - это длина меньшего катета.
4) Находим длину гипотенузы:
6 · 2 = 12 см
ответ: 12 см