SABC правильная треугольная пирамида, => высота SO проектируется в центр правильного треугольника. центр правильного треугольника - точка О - точка пересечения медиан, биссектрис, высот, которые в точке пресечения делятся в отношении 2:1 считая от вершины. высота правильного треугольника вычисляется по формуле:h=a√3/2. h=8*√3/2. h=4√3 AO=(2/3)*h. AO=(2/3)*4√3. AO=8√3/3 прямоугольный ΔSOA: SO=AO, т.к. по условию <SAO=45°. ΔSOA - равнобедренный. V=(1/3)*Sосн*H Sосн=a²√3/4 V=(1/3)*(8² *√3/4)*(8√3/3) V=128/3
Пусть M — середина AB, а C′ — основание высоты, опущенной из точки C на сторону AB. Пусть E — середина отрезка CH, где H— ортоцентр треугольника ABС. Искомый угол равен удвоенному углу MEH, поскольку ∠MEН является вписанным углом, опирающимся на рассматриваемый в задаче отрезок. Пусть O— центр описанной окружности треугольника ABC. Поскольку CE=CH/2=OM, причем CE и OM параллельны, то четырехугольник OMECявляется параллелограммом. Отсюда следует, что ∠MEC′=∠OCН. Известно, что ∠OCH=|∠A−∠B|. Этот угол легко считается, если использовать тот факт, что ∠OCA=90∘−∠AOC/2=90∘−∠B=∠HCB, а также, что ∠C=180∘−∠A−∠В. Тогда искомый угол равен 80
пусть ВС-меньшее основание,тогда
опустим из вершин В и С высоты на АД. (ВР и ВО)
РО=8 мм, треугольник ВРА-прямоугольный, угол Р=90, угол А=60,тогда угол В=30. по свойству: АР=(1/2)*АР,тогда АР=7. АР=ОД,по свойству. =7.
АД=14+8=22
сумма=22+8=30мм.