Объяснение:
ВС=4
Р(АВЕ)=15
P(ABE) =AB+BE+AE
ВСDE - параллелограмм
ВС=ЕD ; BE=CD
P(ABCD) =AB+BC+CD+AD=
=АВ+ВС+ВЕ+АЕ+ЕD=
=AB+BC+BE+AE+BC=
=(AB+BE+AE) +2BC=P(ABE)+2×4=
=15+8=23 cм
ответ : 23 см
Объяснение:
Дано: ABCD - трапеция, AB ∩ CD = K, AD = 12, AC = 8, , BK = 8
Найти: CD - ?
Решение: Треугольник ΔKBC подобен треугольнику ΔKAD по двум углам, так как угол ∠AKD - общий, а так как по условию ABCD - трапеция, то по определению трапеции её две стороны являются параллельными, так как по условию AB ∩ CD = K, то следовательно BC║AD, тогда угол ∠KBC = ∠KAD как соответственные углы при параллельных прямых и секущей по теореме (BC║AD; AK - секущая). По свойству отрезка AK = AB + BK. Так как треугольник ΔKBC подобен треугольнику ΔKAD по двум углам, то по свойствам подобных треугольников: .
Рассмотрим треугольник ΔABC. ПО теореме косинусов:
.
Угол ∠ACB = ∠CAD как внутренние разносторонние углы при при параллельных прямых и секущей по теореме (BC║AD; AK - секущая).
Так как ∠ACB = ∠CAD, то cos ∠ACB = cos ∠CAD.
По теореме косинусов для треугольника ΔCAD:
.
ответ: 3,21см²
Объяснение: известно, что периметр нашего ромба 16см, значит длина одной стороны будет:16/4=4см.
Найдем сторону подобного ромба. Известны его диагонали. Диагонали в точке пересечения делятся пополам и образуют 4 прямоугольных треугольника с катетами 4 и 8 см. Боковая сторона находится по теореме Пифагора: √4²+8²=√16+64=√80=8,9см.
Отношение сторон подобного ромба к нашему равно: 8,9/4=2,23.
Находим диагонали нашего ромба: d1=4/2,23=1,79 см. d2=8/2,23=3,59см.
Находим площадь нашего ромба: S=1/2*d1*d2=0,5*1,79*3,59=3,21см²
Объяснение:
Р=15+2*4=23