Углы FMN и FAB являются соответственными для отрезков MN и AB. Поскольку по условию они равны, то отрезки MN и AB параллельны.
Теперь рассмотрим отрезок MN и плоскость ABC. Как известно, если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости.
Аналогичные рассуждения проведем для отрезка NK и плоскости ABC.
Известно, что если плоскость α параллельна каждой из двух пересекающихся прямых, лежащих в другой плоскости β, то эти плоскости параллельны. Значит, плоскости АВС МNК параллельны.
Объяснение:
5. Треугольники равны по двум сторонам и углу между ними (<BAD = <CDA, AD -общая сторона, AC=BD)
6. т О - точка пересечения высот
Тр-к AMC - прямоугольный. <MAC = 90 - 40 = 50
Тр-к ANC - прямоугольный. <NCA = 90 - 80 = 10
Тр-к AOC: искомый угол <AOC = 180 - (50+10) = 120
7. Тр-к CBD - прямоугольный и р/б, т.к. углы при основании равны 45
DB = CB = 10. По т. Пифагора BC = √(2DB^2) = 10√2
Тр-к ABC - прямоугольный и р/б, т.к. углы при основании равны 45
BC = AC. По т. Пифагора AB = √(2BC^2) = 20 см
N - середина AB.
NM - средняя линия трапеции.
Средняя линия трапеции параллельна основаниям и равна их полусумме.
NM||AD => ∠BNM=∠BAD=60° (соответственные углы при параллельных)
NM=(AD+BC)/2 =(13+11)/2 =12
NM - медиана в прямоугольном треугольнике ABM.
Медиана из прямого угла равна половине гипотенузы.
NM=AB/2=NB
△BNM - равнобедренный с углом 60° => равносторонний.
BM=NM=12