Рассмотрим ΔASM; AS=6; SM=AM=3√3 как высоты равносторонних треугольников. Высота SO пирамиды делит AM в отношении AO:OM= 2:1; по условию SF:FO=1:2. Продолжим MF до пересечения с AS в точке K; поскольку точки M и F лежат в плоскости CMF, точка K также лежит в этой плоскости и поэтому является точкой пересечения плоскости CMF с ребром AS.
Для нахождения отношения SK:KA применим теорему Менелая к треугольнику ASO и прямой MK:
(SK/KA)·(AM/MO)·(OF/FS)=1;
(SK/KA)·(3/1)·(2/1)=1;
SK/KA=1/6.
Если Вы по какой-то неизвестной мне причине до сих пор не знаете теорему Менелая, или учительница не разрешает ей пользоваться, то Вам придется воспользоваться скучной теоремой о пропорциональных отрезках. Для этого придется к тому же сделать дополнительное построение - провести прямую через точку O параллельно MK до пересечения с AS в точке L.
SK/KL=SF/FO=1/2; KL/LA=MO/OA=1/2⇒ в SK одна часть, в LK в два раза больше, то есть две части, в LA в два раза больше, чем в LK, то есть четыре части⇒ в KA шесть частей⇒ SK/KA=1/6
Рассмотрим ΔASM; AS=6; SM=AM=3√3 как высоты равносторонних треугольников. Высота SO пирамиды делит AM в отношении AO:OM= 2:1; по условию SF:FO=1:2. Продолжим MF до пересечения с AS в точке K; поскольку точки M и F лежат в плоскости CMF, точка K также лежит в этой плоскости и поэтому является точкой пересечения плоскости CMF с ребром AS.
Для нахождения отношения SK:KA применим теорему Менелая к треугольнику ASO и прямой MK:
(SK/KA)·(AM/MO)·(OF/FS)=1;
(SK/KA)·(3/1)·(2/1)=1;
SK/KA=1/6.
Если Вы по какой-то неизвестной мне причине до сих пор не знаете теорему Менелая, или учительница не разрешает ей пользоваться, то Вам придется воспользоваться скучной теоремой о пропорциональных отрезках. Для этого придется к тому же сделать дополнительное построение - провести прямую через точку O параллельно MK до пересечения с AS в точке L.
SK/KL=SF/FO=1/2; KL/LA=MO/OA=1/2⇒ в SK одна часть, в LK в два раза больше, то есть две части, в LA в два раза больше, чем в LK, то есть четыре части⇒ в KA шесть частей⇒ SK/KA=1/6
ответ: АС=16 см .
Так как АМ=МВ , то точка М - середина стороны АВ . Аналогично , из равенства BN=NC следует, что N - cередина стороны ВС .
Значит, MN - средняя линия треугольника .
По свойствам средней линии треугольника MN || AC и MN=1/2 * AC , то есть MN - половина стороны АС . Значит, АС=2* MN .
MN+AC=MN+2*MN=3*MN , 3*MN=24 cм ⇒ MN=24:3 , MN=8 см .
АС=2*MN=2*8=16 cм .