1)Рисуешь небольшой квадрат, и имянуешь каждый угол по порядку так, как написано в условии.
получается:
а)От G до HE(не включительно) будет всего лишь :
GH=4см, т.к. просят отрезок именно НЕ, если бы просили ЕН, то было бы GF, FE =4+4=8см.
б)Центр квадрата намного легче посчитать, в отличие от круга.
Центр квадрата будет равен половине его любой стороны (все стороны равны), значит.
О=4:2=2см.
Если О действительно центр, то самое короткое расстояние от О до любой стороны будет его перпендикуляром, и в нашем случае будет равно 2 см.
ответ:а) 4см,б)2см.
Удачи.
Объяснение:
С тебя лайк.
Найдём все расстояния между точками:
АВ = sqrt((2 - (-1)) ^ 2 + (7 - 4) ^ 2) = sqrt(9 + 9) = 3sqrt2
BC = sqrt((1 - (-1)) ^ 2 + (4 - 2) ^ 2) = sqrt(4 + 4) = 2sqrt2
AC = sqrt((2 - 1) ^ 2 + (7 - 2) ^ 2) = sqrt(1 + 25) = sqrt26
Тип треугольника определяется по наибольшему углу, который, в свою очередь, лежит напротив наибольшей стороны треугольника. Чтобы сравнить стороны, можно возвести их длины в квадрат. На неравенство это не повлияет, так как каждая из сторон строго больше 0:
(АВ) ^ 2 = 18
(BC) ^ 2 = 8
(CD) ^ 2 = 26 - Наибольшая сторона.
Найдём наибольший угол треугольника по теореме косинусов:
26 = 18 + 8 - 2(3sqrt2)(2sqrt2)(cos(x)), где х - искомый угол. // - 26
2(3sqrt2)(2sqrt2)(cos(x)) = 0
12*2*cos(x) = 0
24cos(x) = 0 // : 24
cos(x) = 0
x = 90 или 180 градусов, но так как это угол в треугольнике, то он строго меньше 180 градусов (по теореме о сумме углов треугольника) ==> x = 90 градусов ==> треугольник ABC - прямоугольный, ч.т.д.