13
Объяснение:
^2 - в квадрате, 12^2 читается как 12 в квадрате
теорема пифагора, 12^2 + 5^2 = 169 (13^2)
Решение первой задачи. Оно несколько громоздкое, может, разобравшись, сумеете дать короче.
Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.
Для решения задачи нужно сначала найти катет треугольника, который делится биссектрисой.
Вспомним свойство отрезков касательных из одной точки к окружности. Эти отрезки равны.
Обязательно сделайте рисунок. ( не получается его добавить)
Гипотенуза треугольника равна 5+12=17
В каждом катете есть отрезок, равный одному из отрезков кастательных из той же точки к гипотенузе.
Один катет равен 12+х
другой ( искомый )- равен х+5
Составим уравнение:
17²=(х+5)²+(12+х)²
289=х²+10х+25+144+24х+х²
120=2х²+34х (сократим на 2)
х²+17х-60=0
Решив уравнение через дискриминант, найдем
х=3 (второй корень отрицательный и не подходит)
Меньший катет( лежит против меньшего угла) равен 3+5=8
Больший равен 3+12=15 см
Настало время применить теорему, данную в начале задачи:
Обозначим оди из отрезков катета у, второй 8-у
у:(8-у)=15:17
17у=120-15у
32у=120
у=3,75 см - первый отрезок
8-3,75=4,25 см - второй отрезок.
сумма внешнего угла треугольника вместе с внутренним равна 180 градусов, поэтому внутренние углы в треугольнике равны 180-107=73градуса, 180-123=57 градусов. Сумма углов в треугольнике равна 180 градусов, поэтому третий угол равен
180-(73+57)=50 градусов. Внешний угол смежный с ним равен 180-50=130 градусов.
сумма внешних углов треугольника, взятых по одному около каждой вершины равна 360 градусов. 123+107+130=360градусов
2)внешний угол равен 88 градусов, значит внутренний угол равен 180-88=92градуса. так как этот угол тупой, то он является вершиной равнобедренного треугольника. Тогда углы при основании равны. По свойству внешнего угла их сумма равна внешнему углу, не смежному с ними, то есть 88 градусов. Каждый угол равен 88:2=44 градуса
Відповідь: 13.
Пояснення: Пусть гипотенуза равна Х.
По теореме Пифагора (квадрат гипотенузы равен сумме квадратов катетов) имеем:
Х^2 = 12^2 + 5^2 = 144 + 25 = 169
Х = √169 = 13.