1. 1,5 см
2. 18 см
3. Кола перетинаються один з одним.
4. Радіус = 3 см
5. Радіус 1= 9 см, радіус 2 = 21 см.
6. Доведення за рівністю трикутників.
7. Катети трикутника 12 см і 5 см, гіпотенуза - 13 см.
Объяснение:
1. Концентричні кола - це кола з різними радіусами, які мають спільний центр. Отже, одне коло від іншого буде на відстані 3-1,5=1,5 см.
Відповідь: ширина утвореного кільця дорівнює 1,5 см.
2. Центром кола, описаного навколо прямокутного трикутника, є середина гіпотенузи. Гіпотенуза дорівнює діаметру кола. Діаметр дорівнює 2*9=18 см.
Відповідь: гіпотенуза дорівнює 18см.
3. Якщо б кола дотикалися один до одного, то відстань між радіусами була б 2+9=11 см. Т. я. відстань між центрами кіл 10 см, то кола перетинаються на відстані 1 см.
4. Радіус кола, вписаного у прямокутний трикутник можна знайти за до формули площі:
S=1/2 * (a+b+c) * r, де r - радіус вписаного кола, a, b, c - сторони трикутника.
S=1/2 * (9+12+15) * r = 1/2 * 36*r=18*r,
тоді як площа прямокутного трикутника S=1/2 * 9 * 12=54
r=54/18=3 см
Відповідь: радіус вписаного кола дорівнює 3 см.
5. Різниця між радіусами кола складає 7-3=4 см, тоді 4 частини - 12 см, а 1 частина = 3 см. Отже, радіус 1 = 3*3=9 см, радіус 2 = 3*7=21 см.
6. У трикутника AOC та BOD сторони рівні, т. я. вони є радіусами кола. За умовою кути при вершині у них рівні. Отже, за теоремою рівності трикутників (якщо дві сторони і кут між ними одного трикутника дорівнює двом сторонам і куту між ними другого трикутника, то такі трикутники рівні) сторони AC і BD рівні.
20,6 м
Объяснение:
Объяснение
х - старая длина поля
у - старая ширина поля
Согласно условию задачи составляем первое уравнение системы (по теореме Пифагора) :
х² + у² = 10 000 (сумма квадратов катетов = квадрату гипотенузы)
х - 62 - новая длина поля
у - 50 - новая ширина поля
2х + 2у - старый периметр поля
2(х - 62) + 2(у - 50) новый периметр поля
Согласно условию задачи, новый периметр меньше старого в 5 раз, составляем второе уравнение системы:
2(х - 62) + 2(у - 50) = (2х + 2у) / 5
Умножим обе части уравнения на 5, чтобы избавиться от дробного выражения, получим:
5(2х -224 + 2у) = 2х + 2у
10х + 10у -2х -2у = 1120
8х + 8у = 1120, сократим на 8:
х + у = 140, выразим х через у:
х = 140 -у и подставим значение х в первое уравнение:
(140 - у)² + у² = 10000, раскрываем скобки, квадрат разности:
19600 - 280у + у² + у² = 10000
2у² -280у + 9600 = 0, сократим на 2:
у² - 140у + 4800 = 0
Получили квадратное уравнение, ищем корни:
у первое, второе = (140 плюс минус √19600-19200) / 2
у первое, второе = (140 плюс минус √400) / 2
у первое, второе = (140 плюс минус 20) / 2
у первое = 60 (ширина), тогда х первое( длина) = 140 - 60 = 80
у второе = 90 (ширина), тогда х первое( длина) = 140 - 90 = 50
Вторую пару х и у отбрасываем, т.к длина не может быть меньше ширины.
Итак, новая длина поля 80 - 62 = 18 (м)
новая ширина поля 60 - 50 = 10 (м)
Ищем диагональ нового поля: √18² + 10² = √424 ≅ 20,6
Проверка
Старый периметр: 2*80 + 2*60 = 280 (м)
Новый периметр: 2*18 + 2*10 = 56 (м)
280 : 56 = 5 (раз), соответствует условию задачи.