Пусть h - высота треугольника BCP из вершины P и t - высота треугольника CBQ из вершины Q. Тогда высота ADP равна 3h (т.к. треугольники ADP и BCP подобны с коэффициентом подобия 3), А высота ADQ равна 3t (т.к. треугольники ADQ и CBQ тоже подобны с коэффициентом подобия 3). Значит, с одной стороны, высота трапеции равна 3h-h=2h, а с другой стороны, эта же высота трапеции равна t+3t=4t. Значит, 2h=4t, т.е. h=2t. Таким образом, площадь ADQ равна AD*3t/2=3BC*3t/2=9t*BC/2, площадь BCP равна BC*h/2=BC*2t/2=BC*t. Значит, искомое отношение площадей равно 9/2.
Пусть h - высота треугольника BCP из вершины P и t - высота треугольника CBQ из вершины Q. Тогда высота ADP равна 3h (т.к. треугольники ADP и BCP подобны с коэффициентом подобия 3), А высота ADQ равна 3t (т.к. треугольники ADQ и CBQ тоже подобны с коэффициентом подобия 3). Значит, с одной стороны, высота трапеции равна 3h-h=2h, а с другой стороны, эта же высота трапеции равна t+3t=4t. Значит, 2h=4t, т.е. h=2t. Таким образом, площадь ADQ равна AD*3t/2=3BC*3t/2=9t*BC/2, площадь BCP равна BC*h/2=BC*2t/2=BC*t. Значит, искомое отношение площадей равно 9/2.
АВ - диаметр для описанной окружности.
радиус = 1/2 АВ = 17.5