М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Unicorn1232911
Unicorn1232911
09.09.2020 04:03 •  Геометрия

РЕШИТЬ 2 ЗАДАЧИ, БУДУ ОЧЕНЬ БЛАГОДАРНА,
задания в файле


РЕШИТЬ 2 ЗАДАЧИ, БУДУ ОЧЕНЬ БЛАГОДАРНА, задания в файле

👇
Ответ:
nastuxxxxa13
nastuxxxxa13
09.09.2020

№1. Параллельность прямых a и b доказана.

№2. Параллельные прямые а и с.

Объяснение:

№1

Надо доказать параллельность прямых а и b.

Дано: прямые а и b.

MP = PE;

МР и МЕ - секущие;

∠1 = ∠2;

Доказать: a || b.

Доказательство:

Для того, чтобы доказать параллельность прямых  a и b, надо доказать один из признаков параллельности прямых.

1. Рассмотрим ΔМРЕ.

МР =  РЕ (по условию)

⇒ ΔМРЕ - равнобедренный.

Углы при основании равнобедренного треугольника равны.

⇒ ∠1 = ∠3

   ∠1 = ∠2 (условие)

⇒ ∠2 = ∠3 - накрест лежащие при a и b и секущей МЕ.

Если при пересечении двух прямых секущей, накрест лежащие углы равны, то прямые параллельны.

⇒ a || b.

№2.

Найти параллельные прямые.

Дано: прямые a, b, c.

d - секущая;

∠1 = 25°; ∠2 = ∠3 = 155°.

Найти: параллельные прямые.

1) ∠3 = ∠5 (вертикальные)

  ∠3 = ∠2 = 155° (условие)

⇒ ∠5 = ∠2 = 155°.

2) ∠2 и ∠5 - внутренние односторонние.

Если при пересечении двух прямых секущей, сумма внутренних односторонних углов равна 180°, то прямые параллельны.

Проверим:

∠1 + ∠5 = 155°+ 155° = 310° ≠ 180°

⇒ прямые c и b НЕ параллельны, так как признак параллельности не соблюдается.

3) ∠2 = ∠4 = 155° (вертикальные)

4) ∠4 и ∠1 - соответственные.

∠4 = 155° (п.3)

∠1 = 25° (условие)

Если при пересечении двух прямых секущей, соответственные углы равны, то прямые параллельны.

∠1 ≠ ∠4 ⇒ прямые а и b НЕ параллельны.

5) Проверим параллельность а и с.

∠1 = 25°; ∠3 = 155° (условие)

6) ∠1 и ∠3 - внешние односторонние.

Если при пересечении двух прямых секущей, сумма внешних односторонних углов равна 180°, то прямые параллельны.

Проверим:

∠1 + ∠2 = 25° + 155° = 180°

⇒ прямые а и с - параллельны.


РЕШИТЬ 2 ЗАДАЧИ, БУДУ ОЧЕНЬ БЛАГОДАРНА, задания в файле
4,4(12 оценок)
Открыть все ответы
Ответ:
SoniaSor
SoniaSor
09.09.2020
В обоих случаях площадь ищется по формуле S= 0.5*P*r(r-радиус вписанной окружности) или же для правильного шестиугольника S=3*a*r.
Понятно, что при наличии описанного правильного шестиугольника мы ищем площадь сразу через эту формулу, но если мы имеем дело с правильным шестиугольником, вписанным в окружность, то нам необходимо найти радиус вписанной окружности в этом же шестиугольнике.
Ищется она по формуле: r=R*cos 180/n, где  - количество сторон данного правильного многоугольника.
Тогда формула принимает вид r=R*cos 30=R*√3/2
4,5(78 оценок)
Ответ:
sharunovamaria01
sharunovamaria01
09.09.2020

1) 

Радиус вписанной окружности правильного многоугольника совпадает с его апофемой (т.е. перпендикуляром, опущенным из центра на любую сторону) 

Правильный шестиугольник можно разделить на 6 правильных треугольников. Его площадь равна площади 6 таких треугольников и  S(шестиугольника)=6•S (треуг) 

Нам известен радиус вписанной в шестиугольник окружности, т.е. высота правильного треугольника АОВ (см. рисунок). Для нахождения площади правильного треугольника воспользуемся формулой 

S= \frac{h^2}{ \sqrt{3} }

Тогда S _{6} = \frac{6* 3^{2} }{ \sqrt{3} }18 \sqrt{3} дм²

––––––––––

2)

По условию 2 \pi r_{1}-2 \pi r _{2} =2 \pi R

Примем коэффициент отношения радиусов окружностей равным а. Тогда радиус первой равен 5а, второй –3а

5a-3a=40⇒

a=20 см

r1=100 см=1м

S1=π•1²=π м²

60 см=0,6 м 

S2=π•(0,6)²=0,36 м²

–––––––––––

3)

 Найдите площадь сегмента круга, радиуса 4 см, если его хорда равна 4√2 см

Пусть центр круга О, хорда - АВ. 

АО=ВО ⇒∆ АОВ - равнобедренный

По т.косинусов АВ²=АО²+ВО²- 2АО•ВО•cos∠AOB

32=2•16-2•16•cosAOB⇒

cos AOB=0, ⇒ ∠АОВ=90°. 

Площадь искомого сегмента равна разности площадей сектора с углом 90° и прямоугольного ∆ АОВ. 

Градусная мера полного круга 360°, значит, площадь сектора с углом 90°=1/4 площади круга 

S сектора=16π:4=4π

S ∆ АОВ=4•4:2=4•2

S сегм=4π-4•2=4(π-2)= ≈4,566 см²

4)

Отношения отрезков сторон треугольника АВС, на которые их делят данные точки,  одинаковы.

 Примем коэффициент отношения отрезков сторон равным а. 

Тогда АВ=7а. 

Треугольники у вершин подобны треугольнику АВС, т.к. имеют общую вершину и  стороны исходного треугольника пропорциональны сторонам треугольников, «отсекаемых» от него у вершин, с коэффициентом подобия 7:2, Поэтому эти отсекаемые треугольники равновелики. 

 Отношение площадей подобных треугольников равно квадрату коэффициента подобия. 

k=АВ:ВК=7:2 ⇒

S (ABC):S(BKM)=k²= 49/4

 245:S(BKM)=49:4⇒

S(Δ BKM)=20

S(ТКМОНР)=245-3•20=185 мм²


Надо 1. найдите площадь правильного шестиугольника, описанного около окружности, радиус которой раве
4,8(91 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ