1)
Радиус вписанной окружности правильного многоугольника совпадает с его апофемой (т.е. перпендикуляром, опущенным из центра на любую сторону)
Правильный шестиугольник можно разделить на 6 правильных треугольников. Его площадь равна площади 6 таких треугольников и S(шестиугольника)=6•S (треуг)
Нам известен радиус вписанной в шестиугольник окружности, т.е. высота правильного треугольника АОВ (см. рисунок). Для нахождения площади правильного треугольника воспользуемся формулой
Тогда дм²
––––––––––
2)
По условию
Примем коэффициент отношения радиусов окружностей равным а. Тогда радиус первой равен 5а, второй –3а
5a-3a=40⇒
a=20 см
r1=100 см=1м
S1=π•1²=π м²
60 см=0,6 м
S2=π•(0,6)²=0,36 м²
–––––––––––
3)
Найдите площадь сегмента круга, радиуса 4 см, если его хорда равна 4√2 см
Пусть центр круга О, хорда - АВ.
АО=ВО ⇒∆ АОВ - равнобедренный
По т.косинусов АВ²=АО²+ВО²- 2АО•ВО•cos∠AOB
32=2•16-2•16•cosAOB⇒
cos AOB=0, ⇒ ∠АОВ=90°.
Площадь искомого сегмента равна разности площадей сектора с углом 90° и прямоугольного ∆ АОВ.
Градусная мера полного круга 360°, значит, площадь сектора с углом 90°=1/4 площади круга
S сектора=16π:4=4π
S ∆ АОВ=4•4:2=4•2
S сегм=4π-4•2=4(π-2)= ≈4,566 см²
4)
Отношения отрезков сторон треугольника АВС, на которые их делят данные точки, одинаковы.
Примем коэффициент отношения отрезков сторон равным а.
Тогда АВ=7а.
Треугольники у вершин подобны треугольнику АВС, т.к. имеют общую вершину и стороны исходного треугольника пропорциональны сторонам треугольников, «отсекаемых» от него у вершин, с коэффициентом подобия 7:2, Поэтому эти отсекаемые треугольники равновелики.
Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
k=АВ:ВК=7:2 ⇒
S (ABC):S(BKM)=k²= 49/4
245:S(BKM)=49:4⇒
S(Δ BKM)=20
S(ТКМОНР)=245-3•20=185 мм²
№1. Параллельность прямых a и b доказана.
№2. Параллельные прямые а и с.
Объяснение:
№1
Надо доказать параллельность прямых а и b.
Дано: прямые а и b.
MP = PE;
МР и МЕ - секущие;
∠1 = ∠2;
Доказать: a || b.
Доказательство:
Для того, чтобы доказать параллельность прямых a и b, надо доказать один из признаков параллельности прямых.
1. Рассмотрим ΔМРЕ.
МР = РЕ (по условию)
⇒ ΔМРЕ - равнобедренный.
Углы при основании равнобедренного треугольника равны.⇒ ∠1 = ∠3
∠1 = ∠2 (условие)
⇒ ∠2 = ∠3 - накрест лежащие при a и b и секущей МЕ.
Если при пересечении двух прямых секущей, накрест лежащие углы равны, то прямые параллельны.⇒ a || b.
№2.
Найти параллельные прямые.
Дано: прямые a, b, c.
d - секущая;
∠1 = 25°; ∠2 = ∠3 = 155°.
Найти: параллельные прямые.
1) ∠3 = ∠5 (вертикальные)
∠3 = ∠2 = 155° (условие)
⇒ ∠5 = ∠2 = 155°.
2) ∠2 и ∠5 - внутренние односторонние.
Если при пересечении двух прямых секущей, сумма внутренних односторонних углов равна 180°, то прямые параллельны.Проверим:
∠1 + ∠5 = 155°+ 155° = 310° ≠ 180°
⇒ прямые c и b НЕ параллельны, так как признак параллельности не соблюдается.
3) ∠2 = ∠4 = 155° (вертикальные)
4) ∠4 и ∠1 - соответственные.
∠4 = 155° (п.3)
∠1 = 25° (условие)
Если при пересечении двух прямых секущей, соответственные углы равны, то прямые параллельны.∠1 ≠ ∠4 ⇒ прямые а и b НЕ параллельны.
5) Проверим параллельность а и с.
∠1 = 25°; ∠3 = 155° (условие)
6) ∠1 и ∠3 - внешние односторонние.
Если при пересечении двух прямых секущей, сумма внешних односторонних углов равна 180°, то прямые параллельны.Проверим:
∠1 + ∠2 = 25° + 155° = 180°
⇒ прямые а и с - параллельны.