Доказать равенство отрезков по представленному рисунку.
Доказательство:
Докажем, что AO = OC, исходя из признаков равенства треугольников.
1) Рассмотрим треугольники BCD и BAD.
BC = BA по условию (отмечено на рисунке);
CD = AD по условию (отмечено на рисунке);
BD - общая сторона.
Третий признак равенства: если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
ΔBCD = ΔBAD по третьему признаку (по трем сторонам).
2) В равных треугольниках соответствующие углы равны, соответствующие стороны равны.
Следовательно ∠CBD = ∠ABD, а значит ∠CBO = ∠ABO.
3) Рассмотрим треугольники CBO и BAO.
BC = BA по условию; BO общая сторона;
∠CBO = ∠ABO из равенства треугольников BCD и BAD (см п.2).
Первый признак равенства треугольников: если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
ΔCBO = ΔBAO по первому признаку (по двум сторонам и углу между ними).
4) Так как в равных треугольниках соответствующие стороны равны, то АО=ОС.
Пусть Н-проекция высоты на основание, она лежит на гипотенузе , так как грань . проходящая через гипотенузу-по условию перпендикулярна основанию. Опуская перпендикуляры из Н к катетам основания-получаю НН1 и НН2. С высотой пирамиды НS они образуют прямоугольные треугольники. В этих треугольниках SH-общая высота и одинаковый угол бетта по условию. Учитывая что высота в них может быть выражена SH=HH1*tgβ=HH2tgβ-следует что НН1=НН2. Теперь надо выразить это НН1 через а и ∠α. Н делит гипотенузу на две части b и a-b, выражу b через а...-второй рисунок Высота пирамиды HS=HH1*tg β=a*sinα*cosα*tgβ/(sinα+cosα) Площадь основания S(осн)=a^2*sinα*cosα/2 Тогда объем пирамиды V=S(осн)*SH/3=a^3*sin^2(2α)*tgβ/(24(sinα+cosα))
В начале построим рисунок, который приложу вложением. Для наглядности соединим т. О поочерёдно с точками A, B, C, D. Получаем пирамиду с вершиной в т. O, в основании которой лежит квадрат ABCD. Первый вопрос: 1). Докажем, что плоскость ABCD параллельна плоскости A1B1C1D1. Для этого построим пары диагоналей AC, BD, а также A1C1, B1D1. 2). Теперь рассмотрим треугольник OBD. Прямая B1D1 параллельна прямой BD, как средняя линия треугольника OBD, т.к. B1D1 соединяет середины его сторон B1 и D1 (эти точки середины по условию). 3). Теперь рассмотрим треугольник OAC. Прямая A1C1 параллельна прямой AC, как средняя линия треугольника OAC, т.к. A1C1 соединяет середины его сторон A1 и C1 (эти точки середины по условию). 4). Тогда получаем, что две пересекающиеся прямые AC и BD плоскости ABCD параллельны двум пересекающимся прямым A1C1 и B1D1 плоскости A1B1C1D1, а из этого, по теореме о параллельности двух плоскостей, следует, что плоскости ABCD и A1B1C1D1 параллельны, что и требовалось доказать. Второй вопрос: 1). Рассмотрим треугольник OBA. B1A1 - средняя линия треугольника OBA, т.к. соединяет середины сторон OB и OA (B1 и D1 середины по условию). Тогда B1A1=1/2 AB=10/2=5. 2). Аналогично B1C1 - средняя линия треугольника BC, C1D1 - средняя линия треугольника CD, A1D1 - средняя линия треугольника AD. 3). Тогда, B1C1=5, C1D1=5, A1D1=5. 4). Периметр A1B1C1D1=B1C1+C1D1+A1D1+B1A1=5+5+5+5=20
Доказать равенство отрезков по представленному рисунку.
Доказательство:
Докажем, что AO = OC, исходя из признаков равенства треугольников.
1) Рассмотрим треугольники BCD и BAD.
BC = BA по условию (отмечено на рисунке);
CD = AD по условию (отмечено на рисунке);
BD - общая сторона.
Третий признак равенства: если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
ΔBCD = ΔBAD по третьему признаку (по трем сторонам).
2) В равных треугольниках соответствующие углы равны, соответствующие стороны равны.
Следовательно ∠CBD = ∠ABD, а значит ∠CBO = ∠ABO.
3) Рассмотрим треугольники CBO и BAO.
BC = BA по условию;
BO общая сторона;
∠CBO = ∠ABO из равенства треугольников BCD и BAD (см п.2).
Первый признак равенства треугольников: если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
ΔCBO = ΔBAO по первому признаку (по двум сторонам и углу между ними).
4) Так как в равных треугольниках соответствующие стороны равны, то АО=ОС.
Доказано.