Сначала выясним, сколько тупых углов может быть образовано при пересечении двух прямых.
Если прямые перпендикулярны, то все углы прямые, значит, тупых углов нет.
Если прямые не перпендикулярны, то из двух смежных углов (∠1 и ∠2) один будет тупым. Тупым будет и равный ему вертикальный угол. Значит, тупых углов будет 2.
При пересечении двух прямых третьей может быть три случая:
1. Секущая с перпендикулярна обеим прямым.
Тогда тупых углов - 0.
2. Секущая с перпендикулярна одной прямой, а другой не перпендикулярна.
Равносторонний треугольник по другому называется правильный треугольник) берём и смотрим в интернете "правильный треугольник" и что мы видим там...а видим мы все формулы правильного треугольника и конкретно формулу высоты h=v3/2*a где h-высота треугольника а-его сторона подставляем в эту формулу высоту 6v3=v3/2*a a=6v3/(v3/2)=6v3*(2/v3)=6*2=12 это сторона треугольника
у равностороннего (правильного) треугольника все стороны равны..значит чтобы найти периметр нам надо сторону умножить на 3 P=3*12=36
Основные научные достижения арабских ученых относятся ко времени Раннего Средневековья. Значителен был вклад арабов в математическую науку. В VIII в. – и особенно в IX-Х вв. – арабские ученые сделали важные открытия в области геометрии, тригонометрии. Живший в Х в. Абу-л-Вафа вывел теорему синусов сферической тригонометрии, вычислил таблицу синусов с интервалом в 15°, ввел отрезки, соответствующие секансу и косекансу. Поэт, ученый Омар Хайям написал «Алгебру» – выдающееся сочинение, в котором содержалось систематическое исследование уравнений третьей степени. Он также успешно занимался проблемой иррациональных и действительных чисел. Ему принадлежит философский трактат «О всеобщности бытия». В 1079 г. он ввел календарь, более точный, чем современный григорианский. В Багдадском халифате узнали о математических открытиях индийцев в VIII в. Сразу же подхваченная арабами цифровая система стала известна в Западной Европе под названием арабской к XII в. (через арабские владения в Испании).
ответ: 0 или 2 или 4.
Объяснение:
Сначала выясним, сколько тупых углов может быть образовано при пересечении двух прямых.
Если прямые перпендикулярны, то все углы прямые, значит, тупых углов нет.
Если прямые не перпендикулярны, то из двух смежных углов (∠1 и ∠2) один будет тупым. Тупым будет и равный ему вертикальный угол. Значит, тупых углов будет 2.
При пересечении двух прямых третьей может быть три случая:
1. Секущая с перпендикулярна обеим прямым.
Тогда тупых углов - 0.
2. Секущая с перпендикулярна одной прямой, а другой не перпендикулярна.
Тупых углов - 2.
3. Секущая с не перпендикулярна ни одной прямой.
Тупых углов - 4.