пусть m – точка пересечения диагоналей ac и bd четырёхугольника abcd. применим неравенство треугольника к треугольникам abc, adc, bad и bcd: ac < ab + bc, ac < da + dc, bd < ab + ad, bd < cb + cd. сложив эти четыре неравенства, получим: 2(ac + bd) < 2(ab + bc + cd + ad).
запишем неравенства треугольника для треугольников amb, bmc, cmd и amd: am + mb > ab, bm + mc > bc, mc + md > cd, ma + md > ad. сложив эти неравенства, получим: 2(ac + bd) > ab + bc + cd + ad.
1. Пусть одна сторона параллелограмма равна х см, а вторая у см. Тогда периметр параллелограмма будет равен 2х+2у=48 см, но по условию известно что х-у=7 см.
Решим полученную систему уравнений:
2х+2у=48
х-у=7 |*2 (умножим второе уравнение на 2);
2х+2у=48 (сложим полученные уравнения)
+
2х-2у=14;
2х+2х+2у-2у=48+14
4х=62
х=62/4
х=15,5
Найдем у:
х-у=7
15,5-у=7
-у=7-15,5
у=8,5
ответ: Стороны параллелограмма равны 15,5 см и 8,5 см.
2. АВ=СД (так как АВСД – параллелограмм)
Свойство биссектрисы параллелограмма:
Биссектриса параллелограмма отсекает равнобедренный треугольник
Значит АВ=ВЕ=40 см. и СД=СЕ=40 см.
ВС=ВЕ+СЕ=40+40=80 см.