рассмотрим треугольники СВО и ОВД мы видим что СО = ОД по условию задачи , углы прямые (СОВ = ДОВ) сторона ОВ общая , значит треугольники СОВ и ДОВ равны по двум сторонам и углу между ними то есть по 1 признаку равенства треугольников . Рассмотрим треугольники АОС и АОД , АО- общая сторона , СО = ОД по условию задачи , а углы равные ( по свойству смежных углов и вертикальных углов) значит треугольники АОС = АОД по двум сторонам и углу между ними то есть тоже по 1 признаку равенства треугольников. Теперь если треугольник АОС = треугольнику АОД и треугольник СОВ = треугольнику ДОВ значит треугольники АВС и АВД равные
Катеты прямоугольного треугольника равны 20 √41 и 25√41, то по теореме Пифагора гипотенуза = √(20 √41)² + (25√41)²=√16400+25625=√42025=205 Площади треугольника равна: S = (20 √41 * 25√41) / 2 (половине произведения катетов). Площади треугольника равна: S = (205 * х) / 2 = (половина произведения стороны на высоту, проведенную к ней) где х - высота, проведенная к гипотенузе.
Составим равенство и найдем значение х: (20 √41 * 25√41) / 2 = (205 * х) / 2 (20 √41 * 25√41) = (205 * х) (умножили на 2) √400*41*√625*41=205х √16400*√25625=205х √420250000=205х 20500=205х х=20500:205 х=100 ответ: Высота равна 100.
рассмотрим треугольники СВО и ОВД мы видим что СО = ОД по условию задачи , углы прямые (СОВ = ДОВ) сторона ОВ общая , значит треугольники СОВ и ДОВ равны по двум сторонам и углу между ними то есть по 1 признаку равенства треугольников . Рассмотрим треугольники АОС и АОД , АО- общая сторона , СО = ОД по условию задачи , а углы равные ( по свойству смежных углов и вертикальных углов) значит треугольники АОС = АОД по двум сторонам и углу между ними то есть тоже по 1 признаку равенства треугольников. Теперь если треугольник АОС = треугольнику АОД и треугольник СОВ = треугольнику ДОВ значит треугольники АВС и АВД равные