1) ВС^2=АВ^2+АС^2-2*АВ*АС*cos60градусов. ВС^2=12^2+8^2-2*12*8*0,5= 208-96=112
2)Дано:
AB = 3 см
BC = 5 см
AC = 7 см
Найти:
наибольший угол - ?
1) В треугольнике ABC наибольший угол находится напротив наибольшей стороны (по свойству углов треугольника):
против AC лежит∠B;
2) По теореме косинусов:
AC2 = AB2 + BC2 - 2 * AB * BC * cos∠B;
3) Преобразовать формулу, чтобы вычислить косинус ∠B:
cos∠B = (AB2 + BC2 - AC2) / (2 * AB * BC) = (32 + 52 - 72) / (2 * 3 * 5) = -(15/30) = -(1/2);
4) Используя таблицу косинусов, определить значение ∠B:
∠B = 120°.
ответ: ∠B равен 120°.
По условию задачи а = 7 см, b = 10 см, где а, b – стороны параллелограмма, а угол между ними равен 180°
Пусть α = 120°, тогда β = 180° - 120° = 60°, так как сумма смежных (соседних) углов параллелограмма равна 180°
По теореме косинусов:
с² = а² + b² - 2ab * cos α, где α - угол между сторонами
Найдем большую диагональ:
c² = 7² + 10² - 2 * 7 * 10 * cos 120° = 49 + 100 - 2 * 70 (-1/2) =
= 149 + 70 = √219; c = √219
Найдем меньшую диагональ:
d² = 7² + 10² - 2 * 7 * 10 * cos 60° = 49 + 100 - 2 * 70 * 1/2 = 149 - 70 = 79;
d = √79
ответ: меньшая диагональ параллелограмма равна √79, большая диагональ равна √219