(a + 2b)² - (3c + 4d)² = (a + 2b - 3c - 4d)(a + 2b + 3c + 4d);
(m - 2n)² - (2p - 3q)² = (m - 2n - (2p - 3q))(m - 2n + 2p - 3q) = (m - 2n - 2p + 3q)(m - 2n + 2p - 3q);
9(m + n)² - (m - n)² = (3(m + n))² - (m - n)² = (3(m + n) - (m - n))(3(m + n) + m - n) = (3m + 3n - m + n)(3m + 3n + m - n) = (2m + 4n)(4m + 2n) = 2(m + 2n) · 2(2m + n) = 4(m + 2n)(2m + n);
16(a + b)² - 9(x + y)² = (4(a + b))² - (3(x + y))² = (4a + 4b - (3x + 3y))(4a + 4b + 3x + 3y) = (4a + 4b - 3x - 3y)(4a + 4b + 3x + 3y).
Решил не всё :(
№1
Длины сторон треугольника должны удовлетворять неравенству треугольника: сумма любых двух сторон больше третьей стороны.
а) 2 + 8 = 10 (см), 10 см < 13 см - построить треугольник нельзя
б) 0,5 м + 0,5 м = 1 м - построить треугольник нельзя.
№2
а)1:2:3 нет, потому что неравенства
триугольника
пусть 1 часть х
х<2х+3х правильно
2х<х+3х правильно
3х<х+2х неправильно
б)2:3:6 нет
2х<3х+6х правильно
3х<2х+6х правильно
6х<3х+2х не правильно
в)1:1:2 нет
х<х+2х правильно
х<х+2х правильно
2х<х+х не правильно
Достаточное условие: сумма двух меньших сторон больше большей стороны треугольника
№3
а) Раасмотрим 2 случая.
1) 6см, 3см, 3 см
6<3+3
6<6 - неверно, значит такой треугольник не существует
2) 6см, 6см, 3 см
6<6+3
6<9 - верно, значит 3 сторона = 6см
б) 8см, 2см, 2см
8<2+2
8<4 - неверно
8см, 8см, 2см
8<8+2
8<10 - верно
3 сторона = 8см
№4
Тут есть 2 варианта любое переписывай
Вар 1
Дан р/б треугольник. Пусть равные стороны по 12 см, а основание 5 см.
12*2 + 5 = 24+5 = 29 см - периметр данного треугольник
Вар 2
Дан р/б треугольник. Пусть равные стороны по 5 см, основание 12 см
Тогда получается, что сумма двух сторон треугольника меньше третьей стороны, т. е. 12 >5+5, чего не может быть согласно неравенству треугольника (каждая сторона треугольника должна быть меньше суммы двух других сторон)
Этот вариант невозможен.
ответ: периметр 29 см
Хх все