Площадь прямоугольного треугольника равна половине произведения его катетов.
Пусть угол С=90°, угол А=30°.
Тогда ВС=12•sin30°=6 см
АС=12•cos30°=6√3 см
S(∆ABC)=AC•BC:2=36√3:2=18√3 см²
Равновеликие части означает равные по площади, т.е. каждая равна половине площади данного треугольника⇒
S/2=9√3 см² площадь кругового сектора окружности с центром в вершине А.
Одна из формул площади сектора круга:
S=πr*α/360°
отсюда находим радиус по известным площади и углу α=30°:
9√3=π•r²/12
r=√(108√3/π)=7,716 см
основания трапеции параллельны, т.е. для них перпендикуляр общий...
этот перпендикуляр будет состоять из двух высот для треугольников,
опирающихся на основания трапеции...
одно основание меньше, другое больше --- это дано)))
треугольники, опирающиеся на основания трапеции подобны --- у них
равные углы (вертикальный и накрест лежащие при параллельных основаниях трапеции)))
следовательно, существует коэффициент подобия,
равный отношению сторон, в том числе и оснований трапеции...
k = a / b, a < b ---> k ≠ 1
этот же коэффициент связывает и высоты подобных треугольников,
и получим, что в меньшем треугольнике и высота меньше)))
ЧиТД