Объяснение:
{ AM - MB = 7
{ MB = AM\2
=>
AM - (AM\2) = 7 > 2AM - AM = 14 >
AM = 7 и
MB = AM\2 = 7\2 = 3,5
11) AM =MB = AB > L A = L M = L B = 180\3 = 60 град.
AM = MB и MD _|_ AB > L AMD = L M\2 = 60\2 = 30 град. =>
DM = 2 * DE = 2 * 4 = 8
14) AKM = AEM, так как L MAK = L MAE и L AKM = L AEM =>
и L AMK = L AME => треугольники подобны по трем углам, а равны, так как гипотенуза АМ общая =>
KM = EM = 13
15) L CMB = 180 - (L C + L CBM) = 180 - (70 + 40) = 70 град.
L BMD = 180 - (L MBD + L MDB) = 180 - (40 + 90) = 50 град.
L AMD = 180 - (L CMB + L BMD) = 180 - (70 + 50) = 60 град. =>
MD = AM\2 = 14\2 = 7 Незнаю наверное правильно
Два шара.
Радиусы шаров равны 8,8 см и 6,6 см.
Найти:Радиус шара, площадь поверхности которого равна сумме площадей их поверхностей - ?
Решение:Пусть R₁ - радиус одного шара (8,8 см), тогда R₂ - радиус другого шара (6,6 см).
Также R₃ - неизвестный радиус шара, площадь поверхности которого равна сумме площадей поверхностей изначально данных шаров.
S полн поверхности = 4πR²
S полн поверхности (R₁) = π(4 * 8,8²) = 309,76π см²
S полн поверхности (R₂) = π(4 * 6,6²) = 174,24π см².
Итак, по условию сказано, что есть какой-то шар, площадь поверхности которого равна сумме площадей поверхности изначально данных шаров.
⇒ S полн поверхности (R₃) = 309,76π + 174,24π = 484π см².
S полн поверхности (R₃) = 4πR² = 484π см² ⇒ R = √(484/4) = √121 = 11 см.
Итак, R₃ = 11 см.
ответ: 11 см.
меньшая сторона 9 см
большая сторона 14 см
Объяснение:
Периметр прямоугольника вычисляется по формуле: Р=2(х+у), где х,у - стороны прямоугольника.
Площадь прямоугольника вычисляется по формуле: S= x×y, где х,у - стороны прямоугольника.
Периметр равен 46см:
2х+2у=46
х+у=23
х=23-у.
Площадь равна 126см²:
(23-у)×у=126
23у-у²-126=0
у²-23у+126=0
а=1; b=-23; c=126
Меньшая сторона равна 9 см
Большая сторона равна 14 см