Какое из следующих утверждений верно?
1) Через точку, не лежащую на данной прямой, можно провести прямую, перпендикулярную этой прямой.
ЗАДАНИЕ №2.
Какое из следующих утверждений верно?
1) Треугольника со сторонами 1, 2, 4 не существует.
ЗАДАНИЕ №3.
Какие из следующих утверждений верны?
3) Все диаметры окружности равны между собой.
ЗАДАНИЕ №4.
Какое из следующих утверждений верно?
1) Длина гипотенузы прямоугольного треугольника меньше суммы длин его катетов.
ЗАДАНИЕ №5.
Укажите номера верных утверждений.
1) Любые три прямые имеют не более одной общей точки.
3) Если две прямые перпендикулярны третьей прямой, то эти две прямые параллельны.
ЗАДАНИЕ №6.
Укажите номера неверных утверждений.
1) При пересечении двух параллельных прямых третьей прямой сумма накрест лежащих углов равна 180°.
3) Если угол равен 47°, то смежный с ним равен 153°.
ЗАДАНИЕ №7.
Укажите номера верных утверждений.
2) Любые две прямые имеют ровно одну общую точку.
3) Если угол равен 108°, то вертикальный с ним равен 108°.
ЗАДАНИЕ №8.
Какие из данных утверждений верны? Запишите их номера.
2) Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны.
3) Через любые две точки можно провести прямую.
ЗАДАНИЕ №9.
Укажите номера верных утверждений.
1) Через любую точку проходит не менее одной прямой.
2) Если при пересечении двух прямых третьей прямой соответственные углы равны 65°, то эти две прямые параллельны.
ЗАДАНИЕ №10.
Какие из следующих утверждений верны?
2) Если угол равен 60°, то смежный с ним равен 120°.
3) Если при пересечении двух прямых третьей прямой внутренние односторонние углы равны 70° и 110°, то эти две прямые параллельны.
ЗАДАНИЕ №11.
Укажите номера верных утверждений.
1) Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, делит основание на две равные части.
2) Сумма смежных углов равна 180°.
ЗАДАНИЕ №12.
Укажите номера верных утверждений.
2) Если два угла треугольника равны, то равны и противолежащие им стороны.
3) Внутренние накрест лежащие углы, образованные двумя параллельными прямыми и секущей, равны.
Площадь полной поверхности пирамиды (обозначим её МАВСD)
состоит из суммы площадей всех граней.
Противоположные боковые грани равны по трём сторонам.
Так как МО перпендикулярна плоскости основания, а ВD⊥АВ и CD, то ОВ – проекция наклонной МВ.
По т.о 3-х перпендикулярах МВ⊥АВ.
Диагонали параллелограмма точкой пересечения делятся пополам ⇒. ОВ=1,5.
Высота пирамиды МО⊥ОВ.
Из ∆ МОВ по т.Пифагора
МВ=√(МО²+ОВ²)=√(4+2,25)=2,5
Ѕ(АМВ)=МВ•АВ:2=2,5•4:2=5 м²
Ѕ(MCD)=S(AMB) ⇒Ѕ(MCD)+S(AMB)=10 м²
Найдём высоту второй пары боковых граней.
а) Высота DH прямоугольного ∆ BDH (в основании) равна произведению катетов, делённому на гипотенузу.
DH=DB•DC:BC=3•4:5=2,4 м
Проведем ОК⊥ВС
ВO=ОD ⇒ ОК - средняя линия ∆ВDH и равна половине DH.
ОК=1,2 м
ОК - проекция наклонной МК. ⇒ По т.ТПП отрезок МК⊥ВС и является высотой ∆ ВМС
б) Из прямоугольного ∆ МОК по т.Пифагора
МК=√(MO²+OK²)=√(4+1,44)=√5,44
√5,44=√(544/100)=(2√34):10=0,2√34
S(MBC)=BC•MK:2=0,5•5•0,2√34=0,5√34 м²
S(AMD)=S(MBC)⇒ S(AMD)+S(MBC)=2•0,5√34=√34 м²
S(ABCD)=DB•AB=3•4=12 м²
Площадь полной поверхности MABCD:
2•S(AMB)+S(ABCD)+2•S(MBC=10+12+√34=(22+√34)м²