елаем насечки М и К на его сторонах. АМ=АК= радиусу проведенной окружности.
Из т.А на отложенном отрезке тем же раствором циркуля проведем полуокружность. Точку пересечения с АС обозначим К1.
От К1 циркулем проведем полуокружность радиусом, равным длине отрезка КМ, соединяющим стороны заданного угла.
Эта полуокружность пересечется с первой. Через точку пересечения проведем от т. А луч и отложим на нем отрезок, равный данной стороне АВ, отметим точку В. . Соединим В и С.
Искомый треугольник построен.
б) Биссектриса проводится так же, как проводится срединный перпендикуляр к отрезку.
Из точек, взятых на сторонах угла на равном расстоянии от его вершины А ( отмеряем циркулем) проводим полуокружности равного радиуса так, чтобы они пересеклись. Через точки их пересечения и А проводим луч. Треугольник АМ1К! - равнобедренный по построению, АЕ - перпендикулярен М1К1 и делит его пополам.
Треугольники АЕМ1 и АЕК1 равны по гипотенузе и общему катету. Поэтому их углы при А равны. АЕ - биссектриса.
Определение: "Правильная пирамида — это пирамида, основанием которой является правильный многоугольник, а вершина пирамиды проецируется в центр этого многоугольника. Высота боковой грани, проведенная из вершины правильной пирамиды, называется апофемой, боковые ребра равны, боковые грани равны (все являются равнобедренными треугольниками)". Следовательно, углы наклона боковых ребер к основанию равны - это углы между ребром и высотой основания (правильного треугольника). Углы углы наклона боковых граней равны - это углы между апофемой и высотой основания. Высота правильного треугольника по формуле равна h=(√3/2)*a. Эта высота является и медианой, значит она делится точкой О (центром основания) в отношении 2:1, считая от вершины. ОС=(2/3)*h=(√3/3)*a. OH=(1/3)*h=(√3/6)*a. Тогда значение угла наклона боковых ребер к основанию найдем из прямоугольного треугольника AOS: tgα=OS/OC = 2a/(√3*a/3)=2√3 ≈3,46. α=arctg(3,46). α ≈73,9° Значение угла наклона боковых граней к основанию найдем из прямоугольного треугольника НOS: tgβ=OS/OH = 2a/(√3*a/6)=4√3 ≈6,93. β=arctg(6,93). β ≈81,8°.
АЕ - биссектриса.
Объяснение:
елаем насечки М и К на его сторонах. АМ=АК= радиусу проведенной окружности.
Из т.А на отложенном отрезке тем же раствором циркуля проведем полуокружность. Точку пересечения с АС обозначим К1.
От К1 циркулем проведем полуокружность радиусом, равным длине отрезка КМ, соединяющим стороны заданного угла.
Эта полуокружность пересечется с первой. Через точку пересечения проведем от т. А луч и отложим на нем отрезок, равный данной стороне АВ, отметим точку В. . Соединим В и С.
Искомый треугольник построен.
б) Биссектриса проводится так же, как проводится срединный перпендикуляр к отрезку.
Из точек, взятых на сторонах угла на равном расстоянии от его вершины А ( отмеряем циркулем) проводим полуокружности равного радиуса так, чтобы они пересеклись. Через точки их пересечения и А проводим луч. Треугольник АМ1К! - равнобедренный по построению, АЕ - перпендикулярен М1К1 и делит его пополам.
Треугольники АЕМ1 и АЕК1 равны по гипотенузе и общему катету. Поэтому их углы при А равны. АЕ - биссектриса.