Движение - это преобразование фигуры, которое сохраняет расстояние между ее точками.
Свойства движения:
1. Три точки, лежащие (нележащие) на одной прямой, при движении переходят в три точки, лежащие (нележащие) на одной прямой.
2. При движении прямая переходит в прямую - луч - в луч.
3. Отрезок движением переводится в отрезок.
4. Движение соханяет меры углов.
5. Последовательное выполнение двух движений есть движение.
Доказательство свойства 3. Как известно, отрезок - это часть прямой, ограниченная двумя точками. Т.к. по свойству 2 прямая переходит в прямую, то прямая, содержащая отрезок, переходит в прямую, содержащую, отрезок. А так движение сохраняет расстояние, от отрезок одной прямой переходит в равный ему отрезок другой прямой.
Объяснение:
1) Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны.
Теорема: треугольники подобны, если 2 угла одного треугольника равны двум углам другого.
Но, если у треугольников равны 2 угла, то и третьи углы тоже равны. Подумайте.
ВЕРНО.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
Диагонали у четырехугольников перпендикулярны в ромбе, квадрате и дельтоиде. В некоторых случаях и в других четырехугольниках, например в трапеции. Из них прямоугольником является только квадрат.
НЕ ВЕРНО
3) У равностороннего треугольника есть центр симметрии.
Есть три оси симметрии (это его медианы, высоты, биссектрисы, что в этом случае одно и то же), но, как и у любого треугольника НЕТ ЦЕНТРА СИММЕТРИИ.
НЕ ВЕРНО.
4) Если в параллелограмме диагонали равны, то этот параллелограмм — квадрат.
Нет, этот параллелограмм может быть и прямоугольником.
НЕ ВЕРНО.