4. т.к. АВ∠ВС∠АС, то С∠А∠В (по теореме о сторонах и углах треугольника)
180-(110+50)=20 (т.к. сумма углов в треугольнике равна 180)
∠С=110
∠А=50
∠В=20
5.
1)пусть х-основание
тогда х+15-боковая сторона
х+15+х+15+х=48
3х=48-30
3х=18
х=6-основание
х+15=21-боковые стороны (таких две, и они авны, т.к. треугольник равнобедренный)
2)пусть х-боковая сторона
тогда х+15-основание
х+х+х+15=48
3х=33
х=11-боковая сторона
х+15=26-основание
6. т.к. угол ВАН=35, то угол НВА=90-35=55 (по первому св-ву прямоугольного треугольника)
угол АВС=180-55=125, как смежный
угол ВАС=180-(125+25)=30 (т.к. сумма углов в треугольнике равна 180)
В прямоугольнике ABCD диагонали пересекаются в точке О. Угол COD равен 32°. Найдите углы ODA, OAB, BOC, BOA.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Дано :
Четырёхугольник ABCD - прямоугольник.
АС∩BD = O.
∠COD = 32°.
Найти :
∠ODA = ?
∠ОАВ = ?
∠ВОС = ?
∠ВОА = ?
∠ВОА = ∠COD = 32° (так как вертикальные).
∠ВОС + ∠COD = 180° (так как смежные) ⇒ ∠ВОС = 180° - ∠COD = 180° - 32° = 148°.
Диагонали прямоугольника равны и точкой пересечения делятся пополам.Следовательно, АО = ВО = СО = DO.
Рассмотрим ΔCOD - равнобедренный (по определению).
По теореме о сумме углов треугольника - ∠COD + ∠OCD + ∠ODC = 180° ⇒ ∠OCD + ∠ODC = 180° - ∠COD = 180° - 32° = 148°.
Учитываем, что углы при основании равнобедренного треугольника равны - ∠ODC = ∠OCD = 148° : 2 = 74°.
Тогда ∠ODA + ∠ODC = 90° ⇒ ∠ODA = 90° - ∠ODC = 90° - 74° = 16°.
Рассмотрим ΔВОА - равнобедренный (по определению).
По теореме о сумме углов треугольника - ∠ВОА + ∠ОАВ + ∠ОВА = 180° ⇒ ∠ОАВ + ∠ОВА = 180° - ∠ВОА = 180° - 32° = 148°.
Учитываем, что углы при основании равнобедренного треугольника равны - ∠ОАВ = ∠ОВА = 148° : 2 = 74°.
∠ODA = 16°, ∠ОАВ = 74°, ∠ВОС = 148°, ∠ВОА = 32°.
Если две прямые на плоскости перпендикулярные одной и той же прямой, то они параллельны. ⇒ а║b
Действительно: соответственные, внутренние и прочие углы при пересечении прямыми а и b прямой р равны.
Если некая прямая пересекает одну из двух параллельных прямых, то она пересекает и вторую параллельную прямую.
Пусть прямая с пересекает прямую а в точке М.
Допустим, что с не пересекает b. Тогда через точку М проходят две прямые, которые параллельны прямой b, что противоречит аксиоме
( В одной плоскости с заданной прямой через точку, не лежащую на этой прямой, можно провести только одну прямую, параллельную заданной прямой).
Объяснение:
Заметим, что прямая с может быть параллельной прямой р или пересекать её ( на рисунке это с1).