ответ: 64 см.
Объяснение: Малая диагональ делит ромб с углами A/B/C/D на 2 треугольника с противоположными углами 60°. Обозначим их A и C. Вычтя из 360°- 60°- 60°= 240° получим сумму 2-х других углов B и D. Поделив 240°/ 2 = 120° находим величину B и D второй пары противоположных углов. Малая диагональ является биссектрисой углов B и D и делит их пополам - 120°/ 2 = 60°. Отсюда все углы треугольников ABD и CDB равны 60°. Диагональ DB является общей стороной равносторонних треугольников ABD и CDB и равна 16 см Значит все стороны ромба равны 16 см. Периметр равен 16 × 4 = 64 см.
1)Пусть в одной части х см, тогда по условию задачи длина одного из катетов равна 4х см, а длина второго равна 3х см.
2)Площадь прямоугольного треугольника равна половине произведения катетов, тогда
S=
S=24 см², тогда
6x²=24
x²=24:6
x²=4
x=2
Получили, что в одной части 2 см, тогда длина большего катета равна 4·2=8(см), длина меньшего катета равна 3·2=6(см).
ответ: 8 см, 6 см.