2. Паралельні прямі АА1, ВВ1 і СС, пере- BB тинають прямi di d. За рисунком знай- ти довжину відрізка Вісі, якщо AB = = 4 см, ВС = 12 см, A1C1 = 12 см. а) 6 см; б) 9 см; в) 4 см; г) 8 см.
Рисуем трапецию в окружности. Дополним рисунок треугольниками АМD и ВНС.
Углы при вершинах этих треугольников равны половине центральных углов ( под которыми видны из центра окружности основания трапеции) Путем несложных вычислений находим углы треугольников DМН и МНС Для решения применена теорема синусов.
Синусы найденных углов 72,5=0,9537 62,5=0,8870 22,5=0,3826 17,5=0.3007 --------------------------------- МН:sin 62,5=8:0,887=9,019 DН=9,019∙ sin22,5=3,4507 AD=6,9 ------- МН:sin 72,5=8:0,9537=8,3884 СМ=8,3884∙sin17,5=2,52 ВС=5,04 Ясно, что значения длин сторон округленные. -------------
Площадь трапеции равна произведению полусуммы оснований на ее высоту. S ABCD=8(6,9+5,04):2=95,52 (?)³
Центр правильного треугольника - это центр описанной и вписанной окружности, и расположен он в точке пересечения высот (медиан, биссектрис). Т.к. все высоты правильного треугольника равны между собой, эта точка делит каждую высоту ( медиану) этого треугольника по свойству медиан в отношении 2:1, считая от вершины , т.е. АО=ВО=СО, .Эти отрезки - проекции наклонных МА, МВ, МС Поскольку проекции равны, то и наклонные равны. Т.е. МА=МВ=МС МА по т. Пифагора МА=√ (АО²+МО²) АО - радиус описанной окружности и может быть найден по формуле R=a/√3 или найти длину высоты данного правильного треугольника, и 2 ее трети и будут проекциями наклонных , т.е. равны АО. h=a√3):2=6√3):2=3√3 AO=3√3):3)·2=2√3 МА=√(АО² + МО²)=√(12+4)=4 см
Рисуем трапецию в окружности.
Дополним рисунок треугольниками АМD и ВНС.
Углы при вершинах этих треугольников равны половине центральных углов ( под которыми видны из центра окружности основания трапеции)
Путем несложных вычислений находим углы треугольников DМН и МНС
Для решения применена теорема синусов.
Синусы найденных углов
72,5=0,9537
62,5=0,8870
22,5=0,3826
17,5=0.3007
---------------------------------
МН:sin 62,5=8:0,887=9,019
DН=9,019∙ sin22,5=3,4507
AD=6,9
-------
МН:sin 72,5=8:0,9537=8,3884
СМ=8,3884∙sin17,5=2,52
ВС=5,04
Ясно, что значения длин сторон округленные.
-------------
Площадь трапеции равна произведению полусуммы оснований на ее высоту.
S ABCD=8(6,9+5,04):2=95,52 (?)³