Задача на самом деле очень простая, если знать, что биссектриса отсекает от параллелограмма равнобедренный треугольник. Однако свойство это надо постоянно доказывать. Итак, поведем биссектрису ВК в параллелограмме АВСD. ∠АВК обозначим как ∠1, ∠СВК как ∠2, и ∠ВКА как ∠3. (Так будет проще доказать равнобедренность треугольника). ∠2 = ∠3(по св-ву накрест-лежащих углов при параллельных прямых ВС и АD(параллельность по опр. параллелограмма), а ∠1 = ∠2(т.к. ВК - биссектриса) ⇒ ∠1 = ∠3. ⇒ ΔАВК - равнобедр.(по призн.) ⇒ ВА=АК=14(по опр.равноб.Δ). Тогда СD так же равна 14(опр. параллелогр.) AD=ВС=14+7=21 Тогда найдем периметр: 21+14+21+14=70
В трапеции АВСД проведем среднюю линию и обозначим ее КN. FBCH-квадрат,FC-диагональ и FC=6 корень из 2, тогда найдем СН, СН=FH=х, тогда х^2+x^2=(6 корень из 2)^2 2x^2=72, х^2=36 и х=6, а т.к. угол АВС=135, то угол НСД=45, следовательно треугольник СНД-равнобедренный, аналогично треугольник АВF-равнобедренный и эти треугольники равны. ON и KQ- средние линии треугольников СНД и ABF( СН пересекается с KN в точке О; BF пересекается с KN в точке Q) соответственно, тогда они равны 3т.к. НД=СН=6,следовательно KN=KQ+QO+ON=3+3+6=12, а AL=6+6+6=18, тогда ВС найдем как ВС=2KN-АД=2*12-18=6
Итак, поведем биссектрису ВК в параллелограмме АВСD.
∠АВК обозначим как ∠1, ∠СВК как ∠2, и ∠ВКА как ∠3. (Так будет проще доказать равнобедренность треугольника).
∠2 = ∠3(по св-ву накрест-лежащих углов при параллельных прямых ВС и АD(параллельность по опр. параллелограмма),
а ∠1 = ∠2(т.к. ВК - биссектриса) ⇒ ∠1 = ∠3. ⇒ ΔАВК - равнобедр.(по призн.) ⇒ ВА=АК=14(по опр.равноб.Δ).
Тогда СD так же равна 14(опр. параллелогр.)
AD=ВС=14+7=21
Тогда найдем периметр: 21+14+21+14=70