рассмотрим треугольник АОС, он - равнобедренный ( это следует из 1)
треугольник ДОВ, так же равнобедренный ( из 1)
между пересечениями этих линий у нас образовались равные углы: угол АОС= углу ДОВ ( они вертикальные) (2), и также угол СОД=углу СОВ (они тоже вертикальные) (3)
=> треугольник АОС = треугольнику ДОБ (по 1ому признаку: если две стороны одного треугольника и угол между ними равны двум сторонам и углу между ними соответственно, то такие треугольники равны) следовательно АС=ВД, треугольник АОД=СОВ (по 1ому признаку)следовательно АД=СВ
в итоге имеем прямоугольник (четырехугольник у которого две стороны попарно равны - прямоугольник) следовательно Ас параллельно ДВ ( по признаку прямоугольника) что и требовалось доказать
В математике и теоретической физике зеркальной симметриейназывается Калаби — Яу в следующем смысле. Два многообразия Калаби — Яу могут быть совершенно разными геометрически, но давать одинаковую физику элементарных частиц при использовании их в качестве «свёрнутых» дополнительных размерностейтеории струн. Сами такие многообразия называют зеркально симметричными.
Зеркальная симметрия была изначально обнаружена физиками. Математики заинтересовались этим явлением около 1990 года, когда Филип Канделас, Ксения де ла Осса, Пол Грин и Линда Паркс показали, что зеркальную симметрию можно использовать в качестве инструмента в исчислительной геометрии, разделе математики, занимающемся подсчётом количества ответов на те или иные геометрические вопросы. Канделас и соавторы показали, что зеркальная симметрия может быть использована для подсчёта числа рационально квивых на многообразии Калаби — Яу, что решает долго не поддававшуюся задачу. Несмотря на то, что первоначальный подход к зеркальной симметрии базировался на идеях, сформулированных на физическом уровне строгости, математики смогли строго доказать некоторые из предсказаний, сделанные физиками.
из дано следует, что АО=СО=ВО=DО (1)
рассмотрим треугольник АОС, он - равнобедренный ( это следует из 1)
треугольник ДОВ, так же равнобедренный ( из 1)
между пересечениями этих линий у нас образовались равные углы: угол АОС= углу ДОВ ( они вертикальные) (2), и также угол СОД=углу СОВ (они тоже вертикальные) (3)
=> треугольник АОС = треугольнику ДОБ (по 1ому признаку: если две стороны одного треугольника и угол между ними равны двум сторонам и углу между ними соответственно, то такие треугольники равны) следовательно АС=ВД, треугольник АОД=СОВ (по 1ому признаку)следовательно АД=СВ
в итоге имеем прямоугольник (четырехугольник у которого две стороны попарно равны - прямоугольник) следовательно Ас параллельно ДВ ( по признаку прямоугольника) что и требовалось доказать
удач