ΔОСВ равносторонний. В нем углы при вершинах С и В равны.т.к. ОС=ОВ= радиусы одной окружности. Т.е. равнобедренный получается. но поскольку углы С и В еще и по 60°в, то и угол О в этом треугольнике 60 °. Тогда внешний угол АОВ равен сумме двух внутренних ∠ В и ∠С, с ним не смежными, т.е. он равен 60°+60°=120°, а тогда в равнобедренном треуг. АОВ ∠ А =∠ В= 30 °,
(180°-120°)/2=30°, как углы при основании равнобедренного ΔАОВ, т.к. АО и ВО радиусы одной окружности и ∠DАС = 90°, т.к. радиус, проведенный в точку касания перпендикулярен касательной АD, значит, искомый ∠ DАВ =90°-30°=60°
ответ 60 °
Объяснение:
1)Наименьшая сторона лежит против наименьшего угла. В данном случае наименьший угол А(2), значит ВС - наименьшая сторона. ответ: BC
2)Так как треугольник равнобедренный, то у него две стороны равны, а третья - основание. Одинаковые стороны не могут быть меньше суммы основания, значит основание = 13 см. ответ: 13 см.
3) Дано: ABC-равнобедренный, AC-основание, AK и СМ-высоты, BM=8 см. Найти: ВК
Решение: Рассмотрим треугольник АБК и БМС-прямоугольные треугольники, AB=BC(т.к. треуг. АБС - равнобедренный), угол Б-общий, =>, треуг. АБК=треуг.БМС (гипотенуза и острый угол),=>МБ=БК=8см ответ: БК=8см
4) Дано: треугольник АВС - прямоугольный, ∠С=90°, АВ=54 см, ∠А=45°.Найти СН.СН - высота треугольника и кратчайшее расстояние от т. С до прямой АВ.
Δ АВС - равнобедренный, т.к. ∠А=∠В=45°, ⇒ АС=СВ, АН=ВН=54:2=27 см. Найдем высоту СН по теореме Пифагора: СН=√(АН*ВН)=√(27*27)=27 см. ответ: 27 см.
5) ΔСАК=ΔАКР, так как ∠САК=∠КАР (АК-биссектриса по условию), гипотенуза АК-общая. В равных треугольниках против равных углов лежат равные стороны⇒СК=КР, ч.т.д.