Если двугранные углы при ребрах основания равны (равны углы наклона боковых граней к плоскости основания), то высота пирамиды проецируется в центр окружности, вписанной в основание. В ромбе это точка пересечения диагоналей (точка О на рисунке).
Проведем ОН⊥CD. ОН - проекция наклонной SH на плоскость основания, тогда SH⊥CD по теореме о трех перпендикулярах. Значит
Решение Пусть биссектрисы внешних углов при вершинах B и C параллелограмма ABCD пересекаются в точке P, биссектрисы внешних углов при вершинах C и D — в точке Q, внешних углов при вершинах A и D — в точке R, внешних углов при вершинах A и B — в точке S.
Поскольку биссектрисы внутренних односторонних углов при параллельных прямых и секущей перпендикулярны, то PQRS — прямоугольник.
Пусть M — середина BC. Тогда PM — медиана прямоугольного треугольника BPC, поэтому PM = MC. Значит,
< MPC = < PCM = < PCK,
где K — точка на продолжении стороны DC за точку C. Следовательно , PM || CD. Аналогично докажем, что если N — середина AD, то RN = ND и RN || CD. Кроме того , MN || CD и MN = CD. Следовательно, точки M и N лежат на диагонали PR прямоугольника PQRS и
Если двугранные углы при ребрах основания равны (равны углы наклона боковых граней к плоскости основания), то высота пирамиды проецируется в центр окружности, вписанной в основание. В ромбе это точка пересечения диагоналей (точка О на рисунке).
Проведем ОН⊥CD. ОН - проекция наклонной SH на плоскость основания, тогда SH⊥CD по теореме о трех перпендикулярах. Значит
∠SHO = 60° - линейный угол двугранного угла при ребре основания.
Периметр ромба 40 см, значит длина одной стороны ромба
CD = Pabcd/4 = 10 см.
КН - высота ромба.
Sabcd = CD · KH
KH = Sabcd / CD = 60 / 10 = 6 см
ОН = 1/2 КН = 3 см.
ΔSOH: ∠SOH = 90°,
SO = OH · tg∠SOH = 3 · √3 = 3√3 см
Объем пирамиды:
V = 1/3 Sabcd · SO = 1/3 · 60 · 3√3 = 60√3 см³