ответ: 9 см, 21 см, 24 см.
Объяснение:
"стороны треугольника относятся как 3:7:8 найдите неизвестные подобном ему стороны треугольника сумма меньшей и средней по размеру сторон которого равна 30 см"
Дано. сторони трикутника відносяться як 3:7:8. знайдіть невідомі подібному йому сторони трикутника сума меншої та середньої за розміром сторін якого дорівнює 30 см.
Решение.
Пусть одна сторона равна 3х см.
Вторая равна 7х см.
Третья сторона равна 8х см.
3х+7х=30.
10х=30.
х=3.
1 сторона равна 3*3=9 см.
2 сторона равна 3*7=21 см.
3 сторона равна 3*8=24 см.
1)Пусть АВС-равнобедренный треугольник,АС-основание=12 см.
АВ=ВС=10 см
Проведем высоту ВН
Так как треугольник равнобедренный,то высота,проведенная к основанию,является и медианой,и биссектрисой.
Так как ВН-высота,то образуется прямоугольный треугольник АВН,причем из-за того,что ВН ещё и медиана,то АН=НС=12/2=6см.
Теперь по теореме Пифагора находим катет ВН
ВН=корень из(АВ^2-АН^2)
ВН=корень из(64)
ВН=8см
Sтреугольника АВС=(ВН*АС)/2
S=(8*12)/2
S=48 кв. см
ответ:48 кв.см.
2)параллелограмм ABCD
Проведём из угла В на AD высоту BK.
∆ABK-прямоугольный. ےА=30°
Следовательно BK=AB:2, как катет, лежащий против угла 30°
AB=12. Тогда BK=6; S=16×6=96 кв.см.
ответ:96 кв.см.
3)Дано:
АВСD-трапеция,
АВ=СD=13 см.
АD=20см
ВС=10см
Найти:S
Проводим высоту ВН,так как трапеция равнобедренная,то АН будет равен (20-10)/2=5 см
Образовался прямоугольный треугольник АВН,находим катет(высоту) ВН
ВН=корень из(АВ^2-AH^2)
ВН=корень из(169-25)
ВН=12 см.
S=((АD+ВС)/2)*ВН
S((20+10)/2)*12=180 кв.см.
ответ:180 кв.см
Подробнее - на -
Объяснение: