1) Через любые три точки проходит равно одна прямая. Неверно. ( как пример - три вершины треугольника - три точки, но провести через все три прямую не получится). 2) Сумма смежных угла равна 90 градусов. Неверно. Сумма смежных углов 180°. 3) Если при пересечении двух прямых третьей прямой соответственные углы составляют в сумме 180 градусов , то эти две прямые параллельны. Неверно. Соответственные углы при пересечении двух параллельных прямых третьей прямой равны, и их сумма при пересечении параллельных прямых третьей будет 180°, только если они равны по 90°. 4) Через любые две точки проходит не более одной прямой. Верно. (Аксиома).
обозначим А - (см) - катет 1, против известного угла Б - (см) - катет 2, соприкасается с известным углом С - (см) - гипотенуза
1) Определить значение тангенса угла ТАН (известный угол)
2) Определить длину неизвестного катета через тангенс ТАН (известный угол) = А / Б - если известен катет (А) лежащий против известного угла, то находишь катет Б Б = А / ТАН (известный угол) - если известен прилежащий катет (Б) к известному углу, то находишь катет А А = Б * ТАН (известный угол)
3) Определить по теореме Пифагора длину гипотенузы (С) - С^2 = А^2 + Б^2, откуда С = корень квадратный из ( А^2 + Б^2)
4) Определить ПЕРИМЕТР = А+Б+С (см)
5) Определить ПЛОЩАДЬ треугольника равную половине произведения его катетов. т. е. S = ( 1/2 х А х Б ) (кв. см)
сума треугольника 180, по этому 180-(70+25)=105