DOA = 70°. Дано в задаче.
BOC = DOA = 70°. Вертикальные углы равны (1).
DOC = 180° - 70° - 110°. Смежные углы в сумме дают 180° (2).
AOB = DOC = 110°. (1).
ODC = (180° - 110°) / 2 = 35°. Сумма углов треугольника равна 180° (3). Если треугольник равнобедренный, то углы при его основаниях равны (4).
ADO = 90° - 35° = 55°. Два угла составляют прямой угол (5).
OAD = ADO = 55°. (4).
OAB = 90° - 55° = 35°. (5).
OBA = OAB = 35°. (4).
OBC = 90° - 35° = 55°. (5).
OCB = OBC = 55°. (4).
Все остальные углы состоят из других и их можно посчитать по сумме. Например:
DAB = DAO + BAO = 55° + 35° = 90°.
см ниже
Объяснение:
а) Докажите, что ΔADB = ΔАDЕ.
доказательство:
Рассмотрим ΔADB и ΔАDЕ.
BD = DE и ∠BDA = ∠EDA - по условию
DA- общая сторона, следовательно, ΔADB = ΔАDЕ по двум сторонам и углу между ними. ЧТД.
б) Докажите, что AD — биссектриса треугольника ABC.
ИЗ РАВЕНСТВА ΔADB = ΔАDЕ следует, что ∠ВAD = ∠ЕАD, следовательно, AD — делит угол ВАС на два равных угла, а это значит, что она биссектриса треугольника ABC. ЧТД