Дано: АВСДА₁В₁С₁Д₁ - (в условии не указано что это) ВД₁ - диагональ АВ=4, ВС= 5√3, АА₁=3 Найти: ∠А₁ВД₁ -?
1) Пусть АВСДА₁В₁С₁Д₁ - прямоугольный параллелепипед, тогда вычислим по формуле ВД₁²=АВ²+ВС²+АА₁²=4²+(5√3)²+3²=100, ВД₁=√100=10 2) Так как АВСДА₁В₁С₁Д₁ прямоугольный параллелепипед, то в Δ А₁В ∠А=90°, тогда находим по теореме Пифагора А₁В²=АА₁²+АВ²=25, А₁В=√25=5 а также ΔА₁Д₁В - прямоугольный,то cos острого угла равен отношению катета, выходящего из этого угла, к гипотенузе; находим cos ∠А₁ВД₁=А₁В/Д₁В=5/10=1/2=60°
1)Пусть С- прямой угол в прямоугольном треугольнике АВС, тогда СН-высота проведенная к гипотенузе, СМ- биссектриса,проведенная к гипотенузе. 2)По условию сказано, что угол между СМ и СН равен 15 градусов. 3)По свойству биссектрисы угол АСМ= углу МСВ=45 градусов(т.к С по условию 90),значит, так как угол НСМ=15 градусов, а угол НСМ+угол АСН=45 градусов, то угол АСН равен 30 градусам. 4)Так как СН высота, то угол СНА равен 90 градусов, следовательно угол САН=60 градусов( по теореме о сумме углов треугольника). 5)Значит, в треугольнике АВС угол В = 180-90-60=30 градусов( по теореме о сумме углов треугольника) 6) Так как в прямоугольном треугольнике против угла в 30 градусов лежит катет равный половине гипотенузы, то АС=3 см 7) По теореме Пифагора СВ= 3 корня из 3 ответ: 3 и 3корня из 3
542 дм
Объяснение:
1.рассмотрим прямоугольный треугольник MNL
у него:MN=84дм,NL=205дм
найдем сторону ML по теореме пифагора:
с^2=a^2+b^2
b^2=c^2-a^2
b^2=205^2-84^2=42 025-7 056=34969
b=187
ML=187дм
2.P=84+84+187+187=542дм