Объяснение:проводим пряммую, отмечаем на ней точку, получаем развернутый угол (180 градусов)
строим равностонний треугольник (нарисовали пряммую, отложили отрезок, с его концов росчерком циркуля равным построенному отрезку в одной полуплоскости относительно пряммой построили окружности, они пересекутся в третьей точке, получили равносторонний треугольник, каждый угол 60 градусов)
проводим биссектриссу угла 60 градусов (получим углы в 30 градусов), задача на построение биссектриссы базовая
проводим биссектриссу угла 30 градусов (получим углы в 15 градусов)
от вершины развернутого угла откладываем угол равный углу 15 градусов, дополняющий угол (второй угол) будет равный 165 градусам.
Допустим, углы (a1b) и (c1d) равны. Нам нужно доказать, что углы (a2b) и (c2d) тоже равны.
Сумма смежных углов равна 180°. Из этого следует, что a1b + a2b = 180° и c1d + c2d = 180°. Отсюда, a2b = 180° - a1b и c2d = 180° - c1d. Так как углы (a1b) и (c1d) равны, то мы получаем, что a2b = 180° - a1b = c2d. По свойству транзитивности знака равенства следует, что a2b = c2d. Что и требовалось доказать.