1). Построим описанную окружность с центром в т. М Угол ∠АМС - центральный, опирающийся на ту же дугу АС, что и угол ∠АВС. Следовательно: ∠АМС = 2*∠АВС = 2*15 = 30°
В ΔМНС: CH = MC*sin30° = MC/2
Так как АВ = 2*МС, то: СН:АВ = МС/2 : 2MC = 1/4 CH:AB = 1:4
2). В ΔАВС: cos∠ABC = BC/AB = BC/2MC => => BC = 2MC*cos15°
номер 15
дано: угол ТЕR = 75 градусов
ER - бисектриса
ET = FR = EF
75+75=150 градусов - угол E
E=R, T=F
угол R = 150 градусов
360 - (150+150) = 60 градусов
60:2=30
угол T=30 градусов
угол F=30 градусов
номер 16 (тут я не знаю до конца, попробуй загуглить)
угол О = 115 градусов (и с одной стороны угла, и с другой так как углы вертикальны)
угол N=115 градусов (так же и с одной строны угла и с другой так как они тоже вертикальны)
угол E = угол M
номер 10
назовем среднюю точку - O
дано: угол NOM = 120 градусов
EN=FM
из-за вертикальности углов можно сказать, что угол EOF = 120 градусов
угол OEN= 90 градусов
угол MFO= 90 градусов
180-120=60 градусов : 2 = 30.
углы ONM, OMN= по 30 градусов.
угол N= 60, угол M= 60
180-(90+30)= 60 градусов.
углы EON и FOM = по 60 градусов на каждый угол.
180-120= 60 градусов, значит:
60 : 2 = 30.
Угол OEF = 30 градусов.
Угол OFE = 30 градусов.
Угол E = 90 + 30 = 120 градусов.
Угол F = тоже 120 градусов.