Будем рассматривать ΔВЕС и ΔDАВ. 1. Рассмотрим Δ ВЕС: СЕ=ВС(по усл.)⇒ΔВЕС - равнобедренный(по опр.) Найдем ∠ВСЕ. Он смежен с ∠ВСА, то есть в сумме они дают 180°(по св-ву смежных углов): 180-76=104 Найдем ∠СЕВ и ∠СВЕ. ∠СЕВ=∠СВЕ(по св-ву равнобедренного Δ) ∠СЕВ==38 2. Рассмотрим Δ DAВ: DA=АВ(по усл.)⇒Δ DAВ - равнобедренный(по опр.) Найдем ∠DAВ. Он смежен с ∠ВАС(или является внешним углом треугольника АВС и равен сумме углов не смежных с ним), тогда: 180-48=132 Найдем ∠ADВ и ∠DBA. Они равны(по св-ву равноб.Δ) ∠ADВ==24 3.Вернемся к исходному ΔDBE: ∠D=24 ∠E=38 ∠В - можно найти, сложив 24,56 и 38(найденные углы), а можно воспользоваться теоремой о сумме ∠Δ(сумма равна 180). 180-24-38=118 ответ: 24,38,118
ответ: два решения (одно для остроугольного треугольника, другое для тупоугольного...)
1) Р = 256 (см)
2) Р = 56V21 (см)
Объяснение: треугольник АВС, основание ВС=2а (чтобы не возиться с дробями); АВ=АС=b
P = 2a+2b = 2(a+b)
а=b*cos(B); по т.синусов: b=2R*sin(B)
S = 2a*h/2 = ah; h = b*sin(B)
S = P*r/2 = (a+b)*r
(a+b)*r = ab*sin(B)
b(1+cos(B))*r = b*b*sin(B)*cos(B)
(1+cos(B))*r = 2R*sin^2(B)*cos(B)
r/(2R) = (1-cos(B))*cos(B)
обозначим х=cos(B)
x^2 - x + (6/25) = 0
(5x)^2 - 5*(5x) + 6 = 0
по т.Виета корни (3) и (2)
5х=3 ---> х = 0.6
---> sin(B) = V(1-0.36) = 0.8 или
5х=2 ---> х = 0.4
---> sin(B) = V(1-0.16) = 0.2V21
b = 2*50*0.8 = 80 или
b = 2*50*0.2V21 = 20V21
a = 80*0.6 = 48 или
а = 20V21*0.4 = 8V21
P = 2*(80+48) = 128*2 = 256 или
Р = 2*(20+8)*V21 = 56V21