Нехай є трикутна піраміда, сторони основи якої см,
см,
см. Якщо всі бічні грані піраміди нахилені до основи під кутом
, то висота
піраміди лежить у центрі
вписаного кола, де
,
та
— радіуси цього кола.
Треба знайти площу бічної поверхні піраміди. Для того щоб її знайти, треба визначити площу кожної бічної грані.
Знайдемо площу основи за формулою Герона:
см — півпериметр основи.
см² — площа основи.
Знайдемо радіус вписаного кола:
см.
Отже, см.
, де
як радіуси вписаного кола, а
та
— дотичні. Тут
— проекції відповідно
на площину
. Отже,
за теоремою про три перпендикуляри. Тому
— лінійні кути двогранного кута відповідно при ребрах
.
Розглянемо прямокутний трикутник
см
(за першою ознакою рівності трикутників
).
Розглянемо трикутник
см²
Розглянемо трикутник
см²
Розглянемо трикутник
см²
Отже, площею бічної поверхні заданої піраміди буде см².
Відповідь: 432 см².
ответ: 36п
Объяснение:
∠φ = 360° * sinα
Используя данный нам ∠φ (угол развертки боковой поверхности) найдем sinα
120° = 360° * sinα
sinα = 1/3
Вернемся к нашему конусу. Рассмотрим треугольник BDC.
Р ▲BDC = 24 см
ВА=АD
СА = 2R
Р ▲BDC = 2l + 2R
24 = 2l + 2R / 2
12 = l + R
l = 12 - R
Перейдем к прямоугольному треугольнику АВС. ∠ВАС = 90°, АС - R.
АС = 12 - R
sinα = AC/CB = R/(12 - R)
R/(12 - R) = 1/3
3R = 12 - R
4R = 12
R = 3 (см)
l = 12 - 3 = 9 (см)
S(полн п-ти) = Sбок + Sосн
S(полн п-ти) = пR² + пRl
S = п3² + п * 3 * 9 = 9п + 27п = 36п