Так как длины сторон четырёхугольника пропорциональны числам 2 : 3 : 4 : 5, то пусть их длины равны соответственно 2х, 3х, 4х, 5х (х — коэффициент пропорциональности).
Периметр — это сумма длин всех сторон.Следовательно :
2х + 3х + 4х + 5х = 56 см
14х = 56 см
х = 56 см : 14
х = 4 см.
2х = 2*4 см = 8 см.
2х = 2*4 см = 8 см.3х = 3*4 см = 12 см.
2х = 2*4 см = 8 см.3х = 3*4 см = 12 см.4х = 4*4 см = 16 см.
2х = 2*4 см = 8 см.3х = 3*4 см = 12 см.4х = 4*4 см = 16 см.5х = 5*4 см = 20 см.
ответ : 8 см, 12 см, 16 см, 20 см.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.