Поскольку луч с проходит между сторонами угла (ab), по свойству измерения углов получаем: ∠(ac) + ∠(bc) = ∠(ab).
1) ∠(ab) = ∠(bc) + ∠(bc) + 30°, 60° = 2 ⋅ ∠(bc) + 30°;
2 ⋅ ∠(bc) = 30°; ∠(ac) = 45°, ∠(bc) = 15°.
2) ∠(ab) = 2 ⋅ ∠(bc) + ∠(bc), 60° = 3 ⋅ ∠(bc),
∠(ac) = 40°, ∠(bc) = 20°.
3) ∠(ac) = ∠(bc) = ∠(ab) : 2 = 60° : 2 = 30°.
4) ∠(ac) = 2x, ∠(bc) = 3x, ∠(ab) = 60°, 2x + 3x = 60°,
5x = 60°, x = 12°.
∠(ac) = 24°, ∠(bc) = 36°.
ответ: 1) ∠(ac) = 45°, ∠(bc) = 15°;
2) ∠(ac) = 40°, ∠(bc) = 20°;
3)∠(ac) = 30°, ∠(bc) = 60°;
4)∠(ac) = 24°, ∠(bc) = 36°.
Построение сечения.
1. Проводим пряную ЕF до пересечения с продолжениями отрезков
СВ (F1) и СD (Е1). ЕF -линия пересечения секущей плоскости и плоскости основания.
2. Проводим прямую НF1, пересечение этой прямой с ребром ВВ1 -
точка G. GH - линия пересечения секущей плоскости и грани ВВ1С1С.
3. Соединим точки F и G. FG - линия пересечения секущей плоскости и грани АА1В1В.
4. Плоскости АВСD и А1В1С1D1 параллельны, значат линия НК пересечения секущей плоскости и грани А1В1С1D1 будет проходить через точку Н параллельно прямой ЕF.
5. Проводим прямую КЕ1, пересечение этой прямой с ребром DD1 -точка Р. КР -линия пересечения секущей плоскости и грани DD1C1C.
6. Соединим точки Р и Е. РЕ -линия пересечения секущей плоскости и грани АА1D1D.
Нахождение угла.
Угол между плоскостью сечения EFGHKP и плоскостью А1ВD -угол
A1RQ = α, образованный пересечением указанных плоскостей плоскостью, перпендикулярной к обеим плоскостям, то есть перпендикулярной к линии пересечения МN данных двух плоскостей.
Заметим, что этот угол равен углу А1ОС1, так как QL параллельна С10
(так как LО=С1Q, потому что EF - средняя линия прямоугольного треугольника АЕF и АL=LO=C1Q). Половина диагонали основания
(квадрата со стороной а) СО равна а*√2/2.
А тангенс угла С10С равен СС1/СО = а*2/а*√2 = √2.
По таблице тангенсов угол С10С ≈ 55°. Значит и симметричный с ним угол А1ОА =55°, их сумма равна 110°, а дополняющий эти два угла до развернутого искомый угол равен 180°-110°=70°.
ответ: угол между плоскостями FGНКРЕ и A1BD ≈ 70°.
ответ в приложенном рисунке.