М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dashadod
dashadod
07.05.2023 15:43 •  Геометрия

Извесны два угла треугольника АВС найдите его третий угол , угожите вид треугольника и заполните пропуски


Извесны два угла треугольника АВС найдите его третий угол , угожите вид треугольника и заполните про

👇
Ответ:
milka1951
milka1951
07.05.2023

1. 130. 25. 25. Тупоугольный

2. 75. 80. 25. Остроугольный

3. 120. 10. 50. Тупоугольный

4. 80. 90. 10. Прямоугольный

5. 45. 45. 90. Прямоугольный

6. 80. 80. 20 остроугольный


Объяснение:

4,8(80 оценок)
Ответ:
simkinaalinoschka
simkinaalinoschka
07.05.2023

1)180-(130+25)=25

2)180-(75+80)=25

3)180-(10+50)=120

4)180-(80+10)=90

5)180-(90+45)=145

6)180-(80+20)=80

4,6(60 оценок)
Открыть все ответы
Ответ:
dodpddpfp
dodpddpfp
07.05.2023
Треугольник АВС и треугольник А1В1С1 равны по стороне и двум прилежащим к ней углам. Отрываем треугольник АВС. Точку А совмещаем с точкой А1. Луч АС совмещаем с лучом А1С1. Но отрезок АС равен отрезку А1С1. А на данной полупрямой от её начала можно отложить только один отрезок данной линейной меры, значит, точка С совпадет с точкой С1. Но угол А равен углу А1, а от данной полупрямой в данной полуплоскости можно отложить только один угол данной градусной меры, значит луч АВ пойдёт по лучу А1В1. Но угол С равен углу С1, а от данной полупрямой в данной полуплоскости можно отложить только один угол данной градусной меры, значит луч ВС пойдёт по лучу В1С1. А две прямые пересекаются только в одной точке. Лучи АВ и ВС и лучи А1В1 и В1С1 пресекутся в одной точке. Треугольники совпали всеми своими точками. Значит они равны. Теорема доказана
4,5(7 оценок)
Ответ:
Poli4ka228
Poli4ka228
07.05.2023

Проверим, лежит ли точка А(5,-3) на какой-либо заданной высоте. Подставим координаты этой точки в уравнения высот. Если равенство получим верное, то точка лежит на прямой.

13x+4y-7=13\cdot 5+4\cdot (-3)-7=46\ne 0\\\\2x-y-1=2\cdot 5-(-3)-1=12\ne 0

Точка А(5,-3) не лежит ни на одной высоте. Для определённости, пусть высота BN имеет уравнение 2х-у-1=0, а высота СМ: 13х+4у-7=0.

BN⊥AC  ⇒  направляющий вектор для АС равен нормальному вектору для BN:  \vec{s}_{AC}=(2,-1) .

Точка А(5,-3)∈АС и уравнение АС имеет вид:

\frac{x-5}{2}=\frac{y+3}{-1}\; \; ,\; \; -x+5=2y+6\; \; ,\; \; \underline {x+2y+1=0}

CM⊥AB  ⇒  направляющий вектор для АВ равен нормальному вектору для CМ:  \vec{s}_{AB}=(13,4)  .

Точка А(5,-3)∈АВ и уравнение АВ имеет вид:

\frac{x-5}{13}=\frac{y+3}{4}\; \; ,\; \; 4x-20=13y+39\; \; ,\; \; \underline {4x-13y-59=0}

Координаты точки В найдём как точку пересечения АВ и BN, а координаты точки С найдём как точку пересечения АС и CM .

B:\; \left \{ {{4x-13y=59\qquad } \atop {2x-y=1\, |\cdot (-2)}} \right.\oplus \left \{ {{-11y=57} \atop {2x=y+1}} \right. \; \; \left \{ {{y=-\frac{57}{11}} \atop {2x=-\frac{46}{11}}} \right.\; \; \left \{ {{y-\frac{57}{11}} \atop {x=-\frac{23}{11}}} \right. \; \; B(-\frac{23}{11}\, ,\, -\frac{57}{11})\\\\\\C:\; \left \{ {{x+2y=-1\, |\cdot (-2)} \atop {13x+4y=7\qquad }} \right.\oplus \left \{ {{2y=-x-1} \atop {11x=9\quad }} \right. \; \; \left \{ {{2y=-\frac{20}{11}} \atop {x=\frac{9}{11}}} \right.\; \left \{ {{y=-\frac{10}{11}} \atop {x=\frac{9}{11}}} \right.\; \; C(\frac{9}{11}\, ,\, -\frac{10}{11})


Даны уравнения прямых, содержащих высоты треугольника, и координаты одной из вершин треугольника. вы
4,6(43 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ