М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Юролика
Юролика
10.01.2020 08:53 •  Геометрия

BL - бісектриса трикутника ABC, AB : BC = 3 : 1, AL = 12 см. Знайдіть LC.

👇
Открыть все ответы
Ответ:
uncu4ek
uncu4ek
10.01.2020

Объяснение:

Дано: отрезок АВ,  прямая а,  а⊥АВ,  АО=ОВ. Доказать что АС=ВС.

Возьмем на прямой а точку С, построим ΔАВС.

АО=ОВ,  ∠АОС=∠ВОС=90° по условию,  СО - общая сторона, значит

ΔАОС=ΔВОС и тогда АС=ВС. Доказано.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                


Докажите, что концы отрезка, через середину которого проведена прямая перпендикулярно отрезку, равно
4,8(51 оценок)
Ответ:
Амиiskdhdm
Амиiskdhdm
10.01.2020
1. l_{n} = \frac{\pi R}{180} *n, где n - градусная мера соответственного центрального угла.
Найдем радиус окружности:
S= \pi R^{2} =36 \pi ; \\ 
R= \sqrt{ \frac{S}{ \pi } } = \sqrt{ \frac{36 \pi }{ \pi } }=6, где S - площадь круга.
Найдем длину дуги:
l_{20}= \frac{6 \pi }{180} *20= \frac{2}{3} \pi
ответ: \frac{2}{3} \pi см.
2. Найдем сторону квадрата a:
S= a^{2} = 48; \\ 
a= \sqrt{48} =4 \sqrt{3}.
Радиус вписанной в квадрат окружности равен:
R= \frac{a}{2}, где a - сторона квадрата.
R= \frac{4 \sqrt{3} }{2} =2 \sqrt{3}
Площадь вписанного треугольника равна:
S= \frac{ c^{2} \sqrt{3} }{4}, где c - сторона правильного треугольника.
Необходимо найти сторону правильного треугольника. Так как нам известен радиус описанной около треугольника окружности, то воспользуемся формулой:
R= \frac{c}{ \sqrt{3} } ; \\ 
c=R* \sqrt{3} =2 \sqrt{3} * \sqrt{3} =6.
Найдем площадь правильного треугольника:
S= \frac{ c^{2} \sqrt{3} }{4} = \frac{36 \sqrt{3} }{4} =9 \sqrt{3}.
ответ: 9 \sqrt{3} см.
4,4(56 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ