
Касательная СЕ к первой окружности - хорда второй, т.к. соединяет две ее точки С и Е.
Соединим центр В второй окружности с С и проведем к СЕ перпендикуляр ВМ.
Перпендикуляр из центра окружности к хорде делит ее пополам. ⇒ СМ=ЕМ=18:2=9. Треугольник СМВ прямоугольный.
По т.Пифагора ВМ=√(СВ²-СМ²)= √(225-81)=12
В первой окружности проведем радиус в точку касания С. ∠ОСЕ =90°(свойство радиуса к точке касания).
Из О проведем к СВ отрезок ОК ⊥ СВ. ∆ СОК - прямоугольный. Сумма острых углов прямоугольного треугольника равны 90°.
∠МВС+∠МСВ=90°. ∠ОСВ+∠МСВ=90°, ⇒ ∠СОК=∠ВСМ. sin∠МСВ=МВ:СВ=12/15=0,8. Синус равного ему ∠СОК=0,8.
Радиус СО=СК/sin∠COK= 9,375 (ед. длины)
Высота ВН делит CD пополам, значит
CH = HD = CD/2 = 12/2 = 6 см
ΔСВН прямоугольный с углом 30°, значит гипотенуза в два раза больше катета, лежащего напротив угла в 30°.
СВ = 2СН = 12 см.
Pabcd = (AB + BC)·2 = (12 + 12)·2 = 48 см
2. Противолежащие углы параллелограмма равны, значит углы А и С равны, значит равны и их половинки.
∠ВМА = ∠МАК как накрест лежащие при пересечении ВС║AD секущей АМ.
∠ВАМ = ∠МАК так как АМ биссектриса, ⇒
∠ВМА = ∠ВАМ и значит ΔВАМ равнобедренный.
ВА = ВМ = 6 см
∠ВМА = ∠МСК, а это соответственные углы при пересечении прямых АМ и СК секущей ВС, значит
АМ║СК,
СМ║АК так как лежат на противоположных сторонах параллелограмма, значит
АМСК - параллелограмм, ⇒
МС = АК = 4 см
ВС = 6 + 4 = 10 см
Pabcd = (AB + BC)·2 = (6 + 10)·2 = 32 см
3. ∠BOD - внешний угол треугольника ВОК, равен сумме двух внутренних, не смежных с ним.
∠ОВК = 140° - 110° = 30°
ΔВМС: ∠ВМС = 90°, ∠МВС = 30°, ⇒ ∠ВСМ = 90° - 30° = 60° (сумма острых углов прямоугольного треугольника равна 90°)
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠CDA = 180° - ∠BCD = 180° - 60° = 120°
Противолежащие углы параллелограмма равны.
ответ: 60°, 60°, 120°, 120°