В прямоугольный ΔАВС, ∠С=90 вписан круг .Биссектриса ∠А делит катет в отношении CD:DB=3:5. Найдите площадь круга
Решение Площадь круга S= πr² .Радиус вписанной окружности найдем из формулы S=1/2*P*r .
1) Тк " биссектриса угла треугольника делит противоположную сторону на части, пропорциональные прилежащим сторонам треугольника" , то CD:СА=ВD:АВ или 3:СА=5:АВ ⇒ , а это по определению sinB .
2) По основному тригонометрическому тождеству
sin²B+cos²B=1 получаем cosB=√(1- )=
3) cosB= или
⇒ AB=10.
По т Пифагора АС=√(АВ²-ВС²)=√(100-64)=6
4) S=1/2*P*r
1/2*BC*AC=1/2*(AB+BC+AC)*r
1/2*8*6=1/2*24*r ⇒ r=2 ед
S(круга)=π*2²=4π (ед²)
ответ:Угол BAD=углу DAF=72:2=36°,т.к. AD-биссектриса
ответ:Угол BAD=углу DAF=72:2=36°,т.к. AD-биссектрисаУгол FDA=углу DAB=36°,т.к. они являются накрест лежащими для AB || DF и секущей-AD
ответ:Угол BAD=углу DAF=72:2=36°,т.к. AD-биссектрисаУгол FDA=углу DAB=36°,т.к. они являются накрест лежащими для AB || DF и секущей-ADУгол DFA=180-36-36=108°.
ответ:Угол BAD=углу DAF=72:2=36°,т.к. AD-биссектрисаУгол FDA=углу DAB=36°,т.к. они являются накрест лежащими для AB || DF и секущей-ADУгол DFA=180-36-36=108°.ответ:Угол DFA=108°.
∠3=117°
∠6=63°
Решение:
∠3+∠6=180°, односторонние углы
Пусть градусная мера угла ∠6 будет х°; тогда градусная мера угла ∠3 будет (54+х)°
Уравнение:
х+(54+х)=180
2х=180-54
х=126/2
х=63° ∠6.
∠3=54+63=117°