Если угол в параллелограмме 30° то его высота равна половине боковой стороны 12:2=6 см Площадь равна 20*6=120 см² 2) По т Пифагора найдем другую сторону прямоугольника √(15²-9²)=√(225-81)=√144=12 см Периметр равен (9+12)*2=42 см 3) высота трапеции равна одной из боковых сторон и равна 8 см сумма оснований трапеции равна удвоенной площади поделенной на высоту 2*120:8=30 см пусть одна сторона а тогда другая а+6 Отсюда а+а+6=30 см 2а=24 а=12 см Отсюда большое основание 12+6=18 см малое основание 12. Если начертить такую трапецию то ее можно разбить на прямоугольник со основанием 12 см и высотой 8 см и прямоугольный треугольник с катетами 6 см и 8 см. По т Пифагора можно найти гипотенузу с=√(6²+8²)=√(36+64)=√100=10- она и является 4 стороной трапеции ответ 18 и 12- основания трапеции; 8 и 10 см -боковые стороны
х = 37°
Объяснение:
∠DEC = 2x + x = 3x - является внешним углом ΔВDE при вершине Е.
Поэтому ∠DEC = ∠BDE + ∠B.
3x = 2x + ∠B
откуда
∠B = х.
В прямоугольном ΔАВС сумма острых углов равна 90°
∠В + ∠С = 90°
х + 53° = 90°
откуда
х = 37°.